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We investigate the spin dynamics, starting from the initial band-insulating state, of fermionic high-spin atoms in
optical superlattices. Through numerical simulations and analytical calculations, we determine the time evo-
lution behavior of the system. When the spin-changing strength and tunneling strength are comparable, the
spin dynamics feature a spin-changing oscillation with the amplitude modulated by the superexchange inter-
action. When the double-well potential is very shallow, the spin dynamics feature a simple harmonic oscillation
with the oscillation frequencies related only to the spin-changing strength, which can be properly explained with
the perturbation model.
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Fermionic atoms with high spin (s > 1∕2) in optical lat-
tices[1–4] provide a powerful and controllable platform for
developing physical systems that go beyond the tradi-
tional spin 1∕2 magnetism and for enabling an under-
standing of fundamental spin–spin interactions[5–9].
Widespread attention has been paid to the exploration
of spin-changing collisions[10–14], the realization of exotic
quantum phases[15–21], and the simulation of SU(N) mag-
netism[22–27]. The recent experimental realization of a
well-controlled fermionic spinor gas of 40K atoms with
long-lived coherent spin dynamics has opened up a new
route to investigate high-spin magnetism and multiflavor
spin systems[8]. In addition, as the underlying mechanism
of quantum magnetism, superexchange (or its low-order
version, tunneling) has attracted extensive interest in the
context of ultracold quantum gas in optical lattices[28–32].
For the fermionic high-spin system, the complex interplay
of spin and the spatial degrees of freedom leads to insta-
bility of the initial band-insulating state and complicated
many-body dynamics[8]. Flexible and highly controllable
aspects enable the systematic and thorough investigation
of the intriguing interplay between different mechanisms
closely related to the spin dynamics of the high-spin sys-
tems in optical lattices.
In this work, we theoretically investigate the spin dy-

namics of fermionic high-spin atoms in the optical super-
lattice, which involves both spin-changing interactions
and tunneling. By tuning the depth of the potential, we
simulate the time evolution of the relative populations,
starting from the initial band insulator, in several typical
parameter regions. By applying perturbation analysis to
the interplay between spin-changing interaction and tun-
neling, we obtain analytical expressions of these popula-
tion oscillations, which are in excellent agreement with
the numerical results. When the spin-changing strength

and tunneling strength are comparable, the spin dynamics
feature a spin-changing oscillation with the amplitude
modulated by the superexchange interaction. In the very
deep and very shallow double-well potentials, the spin
dynamics feature simple harmonic oscillations with the
oscillation frequencies related only to the spin-changing
strength. However, their mechanisms are essentially dif-
ferent, with tunneling scarcely contributing in the former
and playing a significant role in the spin dynamics of
the latter. The latter case can be properly explicated with
the perturbation model. These results pave the way for the
exploration of more sophisticated spin dynamics with
high-spin atoms in optical lattices.

For high-spin particles, spin-changing collisions can
change the spin configuration of the atoms. When two
atoms with the spin configuration ðm1;m2Þ collide and
are transferred into a new spin configuration, ðm3;m4Þ,
the process must conserve the total magnetization
(m1 þm2 ¼ m3 þm4) and obey the Pauli exclusion
principle (m1 ≠ m2 and m3 ≠ m4). If tunneling couplings
simultaneously exist in the system, the resulting spin-
changing dynamics will be quite different because of
the interplay between the two types of couplings. We
consider four fermionic high-spin atoms trapped in the
optical superlattice. Suppose that the initial state is ap-
propriately selected such that there is only one spin-
changing channel [ðm1;m2Þ↔ðm3;m4Þ] in the dynamical
evolution. The system can be described by the Hamilto-
nian (ħ ¼ 1):

Ĥ ¼ −
X
hj;iim

Jðĉ†imĉjm þ h:c:Þ þ
X
jm

U
2
n̂jmðn̂jm − 1Þ

þ Vc

X
j

ðĉ†jm3
ĉ†jm4

ĉjm2
ĉjm1

þ h:c:Þ; (1)
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where j ¼ L;R denotes the left and right well, respec-
tively; ĉ†jm and ĉjm create and annihilate an atom with
spin mðm ¼ m1;m2;m3;m4Þ in the corresponding well,
respectively; n̂jm is the corresponding particle number
operator; J , U , and Vc are the tunneling strength, onsite
interaction strength of two atoms, and spin-changing
strength, respectively; h.c. represents the Hermitian con-
jugate. The couplings between the quantum states are
shown in Fig. 1. We suppose that the initial state is prop-
erly selected and the magnetic field is appropriately set
such that the energy differences between states can be
omitted in each level manifold depicted in Fig. 1[8].
The states in which four atoms occupy the same sites
are omitted by appropriately selecting the lattice param-
eters to make their energies much higher than that of the
others and other energy scales. The states which are only
occupied by much higher order processes are not in-
cluded. The Hamiltonian [Eq. (1)] can be written in
the form of a matrix with the basis fj1i; j2i;…; j16ig as
follows:

�
M 11 M 12
M 21 M 22

�
; (2)

M 11 ¼

0
BBBBBBBBBBBBBBB@

0 0 Vc 0 0 0 0 Vc

0 0 Vc 0 0 0 0 Vc

Vc V c 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Vc Vc 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCA

;

M 12 ¼MT
21 ¼

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−J J 0 0 −J J 0 0

J 0 J 0 J 0 J 0

−J 0 0 J 0 J −J 0

0 J −J 0 −J 0 0 J

0 −J 0 −J 0 −J 0 −J

0 0 −J J 0 0 −J J

1
CCCCCCCCCCCCCCCA

;

M 22 ¼ diag ðU U U U U U U U Þ :

Here, we have selected the energy level of state j1i as the
zero of energy.
We consider the time evolution of the particles in a

double-well potential with depths ranging from very deep
to very shallow. For the realistic case, Vc is usually 2 or-
ders of magnitude smaller than U [8]. For simplicity, we as-
sume an amplitude of Vc ¼ 0.01U , which is consistent
with Ref. [8]. We assume that the system is initially pre-
pared in the band-insulating state j1i. Then, we monitor
the relative populations of state j1i and state j2i during

the time evolution. For symmetry considerations, we take
the difference between the relative populations of these
two states [N ðtÞ ¼ P1ðtÞ− P2ðtÞ, where P1;2ðtÞ is the rel-
ative population of the state j1i; j2i] to obtain the evolu-
tion curves. The results are presented in Fig. 2.

In the very deep double-well potential, the result [green
dashed line in Fig. 2(a)] appears as a simple harmonic os-
cillation. In this case, we have jU j ≫ jVcj ≫ jJ j. The tun-
neling couplings are very weak and far-off-resonant,
whereas the spin-changing couplings are strong and
resonant. Thus, the system is clearly dominated by the
spin-changing couplings. For simplicity, we can omit
the high-order effect originating from the tunneling

Fig. 1. Schematic of the couplings between the quantum states.
The black arrows represent the tunneling couplings, and the red
arrows represent the spin-changing couplings. The spin states for
the atoms are shown (left). All of the coupling strengths (cou-
pling matrix elements) are provided in Eq. (2).

Fig. 2. Time evolution of the difference between the relative pop-
ulations of states j1i and j2i for amplitudes (a) J∕U ¼ 0.002,
(b) J∕U ¼ 0.01, (c) J∕U ¼ 0.05, and (d) J∕U ¼ 0.5. For all four
cases, Vc∕U ¼ 0.01. The green dashed lines were obtained
through numerical simulation with the Hamiltonian. The red
solid lines were obtained using analytical methods and corre-
spond to (a) cosð2VctÞ, (b) cosðJ extÞ cosð2VctÞ, and
(d) cosð2 ��������

2∕3
p

VctÞ. The blue solid line in (b) is the modulation
envelope obtained using the analytical method, which corre-
sponds to cosðJ extÞ.
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couplings, and hence, the system can be simplified as a
four-level system with all four states (j1i, j2i, j3i, and
j8i) being degenerate. Then, through analytical calcula-
tion, we can obtain the following analytical expression:

NðtÞ ¼ cosð2VctÞ: (3)

This analytical result is depicted as the red solid line in
Fig. 2(a), which is in excellent agreement with the numeri-
cal results (green dashed line).
When the double-well potential become shallower, the

results become slightly more sophisticated. We concentrate
on the situation where J andVc are comparable. The result
is depicted by the green dashed line in Fig. 2(b), which
appears as a fast oscillation whose amplitude is modulated
by a cosine envelope. To quantitatively understand this
phenomenon, we then use the perturbation method to
obtain an analytical expression. Under this circumstance,
the tunneling couplings are far-off-resonant. Thus, we can
adiabatically eliminate the states in which one of the dou-
ble-well sites contains three atoms and the other site con-
tains one atom (j9i–j16i in Fig. 1). The system can thus be
simplified in the low-energy-state space [Fig. 3(a)]. In this
reduced state space, the original one-order tunneling cou-
plings are transformed into superexchange couplings
(green arrows; J ex ¼ 2J2∕U is defined as the superex-
chenge coupling strength[33–35]). The Hamiltonian matrix
in the reduced state space (fj1i; j2i;…; j8ig) can be written
as follows:

0
BBBBBBBBBB@

0 0 Vc 0 0 0 0 Vc
0 0 Vc 0 0 0 0 Vc

Vc V c −2J ex J ex −J ex −J ex J ex 0
0 0 J ex −2J ex J ex J ex 0 J ex
0 0 −J ex J ex −2J ex 0 J ex −J ex
0 0 −J ex J ex 0 −2J ex J ex −J ex
0 0 J ex 0 J ex J ex −2J ex J ex
Vc Vc 0 J ex −J ex −J ex J ex −2J ex

1
CCCCCCCCCCA
:

(4)

In this case, we have jVcj ≫ jJ exj. Hence, in this re-
duced space, all the spin-changing couplings are rela-
tively strong and near-resonant, whereas all the
superexchange couplings are relatively weak and reso-
nant. Compared with the spin-changing couplings, the

superexchange couplings can be viewed as the perturba-
tion. We then diagonalize the reduced Hamiltonian ma-
trix without including the perturbation, and the
resulting energy levels of the eigenstates are grouped into
several manifolds [Fig. 3(b)]. In the model of Fig. 3(b),
the original superexchange couplings [Fig. 3(a)] are
transformed into new forms with the order of magnitude
still being jJ exj. The Hamiltonian matrix in the new basis
(fjαi; jβi; jξi; jηi; j4i; j5i; j6i; j7ig) is

0
BBBBBBBBBBB@

2Vc − J ex 0 0 0 J ex −J ex −J ex J ex
0 0 0 0 0 0 0 0
0 0 −2J ex 0 0 0 0 0
0 0 0 −2Vc − J ex J ex −J ex −J ex J ex
J ex 0 0 J ex −2J ex J ex J ex 0
−J ex 0 0 −J ex J ex −2J ex 0 J ex
−J ex 0 0 −J ex J ex 0 −2J ex J ex
J ex 0 0 J ex 0 J ex J ex −2J ex

1
CCCCCCCCCCCA

: (5)

Fig. 3. (a) Schematic of the couplings between the quantum
states in the reduced state space. The red solid arrows and green
solid arrows represent the spin-changing couplings and superex-
change couplings, respectively. (b) Schematic of the couplings
between the quantum states in the state space that originates
from the perturbation treatment of the reduced states space.
The green solid arrows and green dashed arrows represent the
resonant couplings and far-off-resonant couplings, respectively,
that both originate from the transformation of the superex-
change couplings.
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The definitions of the relevant states are

jαi ¼ ðj1i þ j2i þ j3i þ j8iÞ∕2;
jβi ¼ ð−j1i þ j2iÞ∕

���
2

p
;

jξi ¼ ð−j3i þ j8iÞ∕
���
2

p
;

jηi ¼ ð−j1i− j2i þ j3i þ j8iÞ∕2: (6)

The couplings between the states in the same manifold
are resonant, whereas the other couplings are far-
off-resonant. Fortunately, the initial state [j1i ¼ ð−jαi−���
2

p jβi þ jηiÞ∕2] has nonzero overlaps with the only three
states (jαi, jβi, jηi) that are not coupled to other states
through near-resonant or resonant coupling. Thus, with-
out considering the higher-order effect induced by the
far-off-resonant couplings, the system can be simplified
as a three-level system. Then, through analytical calcu-
lation, we can obtain the following final analytical ex-
pression:

N ðtÞ ¼ cosðJ extÞ cosð2VctÞ: (7)

This analytical result is depicted as the red solid line in
Fig. 2(b), which is in excellent agreement with the numeri-
cal result (green dashed line). It is now clear that the fast
oscillation corresponds to the spin-changing collision,
whose amplitude is modulated by an envelope [blue solid
line in Fig. 2(b)] that is mainly induced by superexchange.
In fact, the result obtained in the very deep double-well
potential [Fig. 2(a)] also satisfies the analytical expression
presented in Eq. (7). The difference is that in the very deep
double-well potential, we have cosðJ extÞ ∼ 1.
When we continue to decrease the depth of the

potential, the resulting oscillation curve behaves in a some-
what complicated manner, as observed in Fig. 2(c). In this
situation, the tunneling couplings and spin-changing cou-
plings together contribute to the complicated oscillation.
As observed in Fig. 2(c), the phase of the resulting oscilla-
tion is not uniform; thus, there is no simple analytical ex-
pression for this situation.
Next, we focus on the spin dynamics in the very shallow

double-well potential. The result is presented as the green
dashed line in Fig. 2(d), which involves a very simple os-
cillation. To quantitatively understand this oscillation, we
use the perturbation method to obtain an analytical ex-
pression. In this case, we have jVcj ≪ jJ j, jU j. The tunnel-
ing couplings are near-resonant, and the spin-changing
couplings are resonant. Compared with the strong tunnel-
ing couplings, the weak spin-changing couplings can be
viewed as the perturbation. At first, we diagonalize the
Hamiltonian without including the perturbation, and
the resulting energy levels of the eigenstates are grouped
into six manifolds that are well separated from each other
(Fig. 4). In the manifold that includes the initial state
(j1i), the states are degenerate; thus, there are free param-
eters when we construct the orthogonal states. For sim-
plicity, we construct the orthogonal states to ensure
that one of the superposition states (jα1i) is coupled to
the two bare states (j1i and j2i) and the other (jα2i) is

not, i.e., jα1i ¼ ð2j3iþ j4i− j5i− j6iþ j7iþ2j8iÞ∕ð2 ���
3

p Þ
and jα2i ¼ ðj4i þ j5i þ j6i þ j7iÞ∕2. These four states
are not coupled to the other states through near-resonant
or resonant coupling. Thus, starting from state j1i, with-
out considering the higher-order effect induced by the far-
off-resonant couplings, the spin dynamics occur only in a
few states (j1i, j2i, jα1i). (State jα2i does not need to be
considered because it is not coupled to any state.) The fol-
lowing final analytical expression is obtained:

N ðtÞ ¼ cos
�
2

���
2
3

r
Vct

�
: (8)

This analytical result is depicted as the red solid line in
Fig. 2(d), which is consistent with the numerical result
(green dashed line). According to the analytical expres-
sion, the oscillation parameter is only related to the
spin-changing strength. This result is not intuitive in
the original coupling model (Fig. 1); however, it is appar-
ent in the perturbation model (Fig. 4), in which all the
relevant states (j1i, j2i, jα1i) are degenerate and con-
nected only by the spin-changing couplings. Although
the oscillation parameter is unrelated to the tunneling
strength, the spin dynamics comprise both spin-changing
and tunneling, which can be observed more clearly by ex-
amining the noticeable populations of the states that are
only connected by the tunneling couplings [see Fig. 5(a)].
This situation is essentially different from the case of a
very deep double-well potential [Fig. 5(b)], in which the
tunneling scarcely contributes.

From the experimental viewpoint, we can prepare 40K
in the f ¼ 9∕2 manifold[8] to achieve the spin dynamics
proposed in this Letter. For the initial state, we suggest
a mixture of jm1;m2i ¼ j1∕2; 9∕2i, which is coupled only
to j3∕2; 7∕2i. The state j5∕2; 5∕2i is forbidden because of
Pauli blocking. The magnetic field for realizing resonant
spin-changing oscillation is on the order of magnitude
of 100 mG[8]. Techniques for obtaining an optical dou-
ble-well potential[29,31], as well as preparing an initial band

Fig. 4. Schematic of the couplings between the quantum states
in the state space that originates from the perturbation treat-
ment of the original state space. The red solid arrows and red
dashed arrows represent the resonant couplings and far-off-res-
onant couplings, respectively, that both originate from the trans-
formation of the spin-changing couplings.
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insulator and detecting relative populations of different
states[8], have been successfully developed.
In conclusion, we systematically investigate the spin dy-

namics of fermionic high-spin atoms in optical superlattices.
Through numerical simulations using the Hamiltonian and
analytical calculations involving the interplay between the
spin-changing interactions and tunneling, we determine the
time evolution behavior of an initially band-insulating state
in a potential with very deep to very shallow depths. The
numerical results and analytical results show excellent
agreement.When the spin-changing strength and tunneling
strength are comparable, the spin dynamics are character-
ized by modulated oscillation, with the fast oscillation fre-
quency corresponding to the spin-changing strength and
the modulation envelope corresponding to the superex-
change strength. When the potential depth is very deep
or very shallow, the spin dynamics feature simple harmonic
oscillation with the oscillation frequency relates only to the
spin-changing strength. Tunneling scarcely contributes for
the very deep potential depth but is indispensable for the
very shallow case. We expect similar results for fermionic
high-spin atoms in certain other systems, where more so-
phisticated and intriguing phenomena are desired.

This work was supported by the National Key Research
and Development Program of China under Grant
No. 2016YFA0301504.
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(b) very deep double-well potential cases. For both cases,
Vc∕U ¼ 0.01. The results were obtained through numerical sim-
ulation with the Hamiltonian. The other states (j9i–j16i) are
scarcely populated during the evolution for both cases and are
not depicted in the figures. For the very shallow double-well po-
tential, the relevant populations are noticeable, which indicates
that tunneling plays an important role in the spin dynamics. In
contrast, for the very deep double-well potential, the relevant
populations are inconspicuous, which indicates that tunneling
scarcely contributes.
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