2019-03-25 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 17 , 2019    10.3788/COL201917.032702


Enhancing coupling coefficient in a hybrid nanotoroid–nanowire system
Qi Zhang1, Juanjuan Ren1, Xueke Duan1, He Hao1, Qihuang Gong1;2, and Ying Gu1;2
1 State Key Laboratory for Mesoscopic Physics, Department of Physics, [Peking University], Beijing 100871 , China
2 [Collaborative Innovation Center of Quantum Matter], Beijing 100871, China

Chin. Opt. Lett., 2019, 17(03): pp.032702

DOI:10.3788/COL201917.032702
Topic:Quantum optics
Keywords(OCIS Code): 270.5580  310.6628  

Abstract
Enhancing light–matter interaction in cavity quantum electrodynamics has aroused widespread interests in on-chip quantum information processing. Here, we propose a hybrid nanotoroid–nanowire system to enhance photon–exciton interaction. A nanoscale gap is formed by placing a dielectric nanowire close to a dielectric nanotoroid, where the coupling coefficient between photon and emitter can achieve 5.55 times of that without nanogap. Meanwhile, the cavity loss and spontaneous emission of the emitter will remain at a small value to guarantee the realization of strong coupling. The method might hold promise for the research of nanophotonics, quantum optics, and novel optical devices.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (496 KB)

Share:


Received:2018/9/4
Accepted:2018/12/7
Posted online:2019/2/26

Get Citation: Qi Zhang, Juanjuan Ren, Xueke Duan, He Hao, Qihuang Gong, and Ying Gu, "Enhancing coupling coefficient in a hybrid nanotoroid–nanowire system," Chin. Opt. Lett. 17(03), 032702(2019)

Note: This work is supported by the National Key R&D Program of China (No. 2018YFB1107200) and by the National Natural Science Foundation of China (Nos. 11525414 and 11734001).



References

1. K. J. Vahala, Nature 424, 839 (2003).

2. J.-M. Pirkkalainen, S. U. Cho, J. Li, G. S. Paraoanu, P. J. Hakonen, and M. A. Sillanpaa, Nature 494, 211 (2013).

3. H. Mabuchi, and A. C. Doherty, Science 298, 1372 (2002).

4. H. J. Kimble, Phys. Scr. T T76, 127 (1998).

5. X. L. Zhong, G. W. Lin, F. X. Feng, Y. P. Niu, and S. Q. Gong, Chin. Opt. Lett. 13, 092701 (2015).

6. B. Lounis, and M. Orrit, Rep. Prog. Phys. 68, 1129 (2005).

7. J. Su, L. Cui, Y. H. Li, and X. Y. Li, Chin. Opt. Lett. 16, 041903 (2018).

8. A. Blais, A. M. van den Brink, and A. M. Zagoskin, Phys. Rev. Lett. 90, 127901 (2003).

9. M. S. Zubairy, M. Kim, and M. O. Scully, Phys. Rev. A 68, 033820 (2003).

10. R. T. Zhao, and R. S. Liang, Chin. Opt. Lett. 14, 062701 (2016).

11. O. Benson, Nature 480, 193 (2011).

12. M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, Nat. Phys. 9, 329 (2013).

13. C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, Science 287, 1447 (2000).

14. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998).

15. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. 97, 053002 (2006).

16. N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, Phys. Rev. Lett. 108, 226803 (2012).

17. K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, Appl. Phys. Lett. 83, 1915 (2003).

18. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).

19. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Phys. Rev. A 71, 013817 (2005).

20. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).

21. D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A 57, R2293 (1998).

22. Y.-S. Park, A. K. Cook, and H. Wang, Nano Lett. 6, 2075 (2006).

23. Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, and C. H. Dong, Phys. Rev. A 81, 053807 (2010).

24. J. R. Buck, and H. J. Kimble, Phys. Rev. A 67, 033806 (2003).

25. H. Lian, Y. Gu, J. J. Ren, F. Zhang, L. J. Wang, and Q. H. Gong, Phys. Rev. Lett. 114, 193002 (2015).

26. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, Nat. Photon. 6, 459 (2012).

27. X. K. Duan, J. J. Ren, F. Zhang, H. Hao, G. W. Lu, Q. H. Gong, and Y. Gu, Nanotechnology 29, 045203 (2018).

28. J. J. Ren, Y. Gu, D. X. Zhao, F. Zhang, T. C. Zhang, and Q. H. Gong, Phys. Rev. Lett. 118, 073604 (2017).

29. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, Nature 535, 127 (2016).

30. B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, Appl. Phys. Lett. 98, 021116 (2011).

31. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).

32. Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. H. Gong, Phys. Rev. A 85, 031805 (2012).

33. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).

34. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University, 2000).

35. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, Nat. Photon. 8, 835 (2014).

36. J. B. Lassiter, F. McGuire, J. J. Mock, C. Ciraci, R. T. Hill, B. J. Wiley, A. Chilkoti, and D. R. Smith, Nano Lett. 13, 5866 (2013).

37. D. O. Sigle, J. T. Hugall, S. Ithurria, B. Dubertret, and J. J. Baumberg, Phys. Rev. Lett. 113, 087402 (2014).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号