2019-03-25 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 17 , 2019    10.3788/COL201917.031601

Effect of 1070 nm laser intensity on parameters of In0.3Ga0.7As solar cell
Guangji Li1, Hongchao Zhang1, Chengmin Wang1;2, Yunxiang Pan1, Jian Lu1, and Dayong Zhou3
1 School of Science, [Nanjing University of Science and Technology], Nanjing 210094, China
2 College of Mechanical Engineering, [Huaian Vocational College of Information Technology], Huaian 223003, China
3 State Key Laboratory of High-Efficiency Power Conversion, [Shanghai Institute of Space Power-Sources], Shanghai 200245, China

Chin. Opt. Lett., 2019, 17(03): pp.031601

Keywords(OCIS Code): 160.6000  260.2160  

The photoelectric properties of In0.3Ga0.7As solar cells applied in laser wireless power transmission (LWPT) were studied when they were irradiated by 1070 nm continuous wave (CW) laser of various intensities. The influences of laser intensity on solar cell parameters extracted by the pollination algorithm were analyzed quantitatively. Results show that the conversion efficiency of the cell rose to the maximum and then decreased rapidly in the laser intensity range of 50–900 mW/cm2. With higher energy laser irradiation, the rise of ideality factor and reverse saturation current would lead to the degradation of voltage at the maximum power point, which was the main reason for the decrease of conversion efficiency. The results provide the basis for choosing the appropriate input energy in the case of different transmission systems.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (596 KB)


Posted online:2019/2/27

Get Citation: Guangji Li, Hongchao Zhang, Chengmin Wang, Yunxiang Pan, Jian Lu, and Dayong Zhou, "Effect of 1070 nm laser intensity on parameters of In0.3Ga0.7As solar cell," Chin. Opt. Lett. 17(03), 031601(2019)

Note: This work was supported by the National Defense Basic Scientific Research Program of China (No. JCKY2016606C002), the Shanghai Aerospace Science and Technology Innovation Fund (No. SAST20161113), the National Natural Science Foundation of China (No. 11774176), and the Fundamental Research Funds for the Central Universities (No. 30918011335).


1. P. E. Glaser, Science 162, 857 (1968).

2. T. He, S. Yang, H. Zhang, C. Zhao, P. Xu, J. He, and H. Wang, Chin. J. Lasers 40, 0317001 (2013).

3. Z. Li, Y. Zhang, Y. Ai, and X. Feng, Laser. Technol. 42, 306 (2017).

4. Z. Li, D. Shi, J. Shen, and Z. Ma, Space. Electron. Tech. 3, 71 (2013).

5. H. Yugami, Y. Kanamori, H. Arashi, M. Niino, A. Moro, K. Eguchi, Y. Okada, and A. Endo, in IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (1997), p.?625.

6. K. Takeda, M. Tanaka, S. Miura, K. Hashimoto, and N. Kawashima, Proc. SPIE 4632, 223 (2002).

7. N. Kawashima, K. Takeda, and K. Yabe, Chin. Opt. Lett. 5, S109 (2007).

8. J. Mukherjee, S. Jarvis, M. Perren, and S. J. Sweeney, J. Phys. D Appl. Phys. 46, 264006 (2013).

9. C.-W. Wu, J. Wang, and C.-G. Huang, J. Power Sources 393, 211 (2018).

10. F. Khan, S. N. Singh, and M. Husain, Sol. Energ. Mat. Sol. C. 94, 1473 (2010).

11. F. Khan, S.-H. Baek, and J. H. Kim, Appl. Energ. 133, 356 (2014).

12. ? Priyanka, M. Lal, and S. N. Singh, Sol. Energ. Mat. Sol. C. 91, 137 (2007).

13. V. Lo Brano, A. Orioli, G. Ciulla, and A. Di Gangi, Sol. Energ. Mat. Sol. C. 94, 1358 (2010).

14. D. T. Cotfas, P. A. Cotfas, and S. Kaplanis, Renew. Sust. Energ. Rev. 28, 588 (2013).

15. Y. Li, W. Huang, H. Huang, C. Hewitt, Y. Chen, G. Fang, and D. L. Carroll, Sol. Energy 90, 51 (2013).

16. A. Ortiz-Conde, F. García-Sánchez, J. Muci, and A. Sucre-González, Facta Universitatis—Series: Electron. Energet. 27, 57 (2014).

17. D. F. Alam, D. A. Yousri, and M. B. Eteiba, Energ. Convers. Manage. 101, 410 (2015).

18. O. Mares, M. Paulescu, and V. Badescu, Energ. Convers. Manage. 105, 139 (2015).

19. N. T. Tong, and W. Pora, Appl. Energ. 176, 104 (2016).

20. X.-S. Yang, in Unconventional Computation and Natural Computation: 11th International Conference (2012), p.?240.

21. Z. Wang, Q. Li, Z. Wang, F. Zou, Y. Bai, S. Feng, and J. Zhou, Chin. Opt. Lett. 14, 081401 (2016).

22. B. Yang, H. Zhang, Q. Ye, H. Pi, C. Shi, R. Tao, X. Wang, and X. Xu, Chin. Opt. Lett. 16, 031407 (2018).

23. R. Mason, “Feasibility of laser power transmission to a high-altitude unmanned aerial vehicle ,” Tech. Rep. ADA544926 (Rand, 2011).

24. Shanghai Institute of Space Power-Sources, Physics Power Technology (Science Press, 2015).

25. M. Wolf, and H. Rauschenbach, Adv. Energy. Conver. 3, 455 (1963).

26. J. Nelson, The Physics of Solar Cells (Shanghai Jiao Tong University, 2011).

27. O. Breitenstein, J. P. Rakotoniaina, M. H. Al Rifai, and M. Werner, Prog. Photovoltaics 12, 529 (2004).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号