2019-03-25 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 17 , 2019    10.3788/COL201917.030604

Visible light positioning: moving from 2D planes to 3D spaces [Invited]
E. W. Lam, T. D. C. Little
Electrical and Computer Engineering Department, [Boston University], Boston, Massachusetts 02215, USA

Chin. Opt. Lett., 2019, 17(03): pp.030604

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2605  060.4510  280.4788  

The global navigation satellite system (GNSS) is a well-established outdoor positioning system with industry-wide impact due to the multifaceted applications of navigation, tracking, and automation. At large, however, is the indoor equivalent. One hierarchy of solutions, visible light positioning (VLP) with its promise of centimeter-scale accuracy and widespread coverage indoors, has emerged as a viable, easy to configure, and inexpensive candidate. We investigate how the state-of-the-art VLP systems fare against two hard barriers in indoor positioning: the need for high accuracy and the need to position in the three-dimensions (3D). We find that although most schemes claim centimeter-level accuracy for some proposed space or plane, those accuracies do not translate into a realistic 3D space due to diminishing field-of-view in 3D and assumptions made on the operating space. We do find two favorable solutions in ray–surface positioning and gain differentials. Both schemes show good positioning errors, low-cost potential, and single-luminaire positioning functionality.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (828 KB)


Posted online:2019/3/5

Get Citation: E. W. Lam, T. D. C. Little, "Visible light positioning: moving from 2D planes to 3D spaces [Invited]," Chin. Opt. Lett. 17(03), 030604(2019)

Note: AcknowledgmentsThis work is supported in part by the Engineering Research Centers Program of the National Science Foundation under NSF Cooperative Agreement No. EEC-0812056.


1. J. Koo, and H. Cha, IEEE Commun. Lett. 15, 187 (2011).

2. R. Faragher, and R. Harle, IEEE J. Sel. Areas Commun. 33, 2418 (2015).

3. S. Fang, C. Wang, T. Huang, C. Yang, and Y. Chen, IEEE Commun. Lett. 16, 564 (2012).

4. J. Armstrong, Y. A. Sekercioglu, and A. Neild, IEEE Commun. Mag. 51, 68 (2013).

5. N. U. Hassan, A. Naeem, M. A. Pasha, T. Jadoon, and C. Yuen, ACM Comput. Surv. 48, 20 (2015).

6. J. Luo, L. Fan, and H. Li, IEEE Commun. Surv. Tutorials 19, 2871 (2017).

7. Y. Zhuang, L. Hua, L. Qi, J. Yang, P. Cao, Y. Cao, Y. Wu, J. Thompson, and H. Haas, IEEE Commun. Surv. Tutorials 20, 1963 (2018).

8. D. Lymberopoulos, and J. Liu, IEEE Sig. Process. Mag. 34, 125 (2017).

9. A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen, R. Raulefs, and E. Aboutanios, IEEE Commun. Surv. Tutorials 19, 1327 (2017).

10. E. W. Lam, and T. D. C. Little, in Proceedings of the 4th ACM MobiHoc Workshop on Experiences with the Design and Implementation of Smart Objects (2018).

11. E. W. Lam, and T. D. C. Little, in Proceedings of 2018 ICC 2018 Workshop—OWC (2018).

12. U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, Electron. Lett. 51, 72 (2015).

13. J. Kahn, and J. Barry, Proc. IEEE 85, 265 (1997).

14. T. Komine, and M. Nakagawa, IEEE Trans. Consum. Electron. 50, 100 (2004).

15. U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen, Electron. Lett. 50, 828 (2014).

16. K. Panta, and J. Armstrong, Electron. Lett. 48, 228 (2012).

17. W. Zhang, M. I. S. Chowdhury, and M. Kavehrad, Opt. Eng. 53, 045105 (2014).

18. S. Zhang, W. Zhong, P. Du, and C. Chen, IEEE Photon. Technol. Lett. 30, 1703 (2018).

19. Y. S. Kuo, P. Pannuto, K. J. Hsiao, and P. Dutta, in Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom 14 (2014), p.?447.

20. Y. S. Eroglu, I. Guvenc, N. Pala, and M. Yuksel, in Proceedings of the IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON) (2015), p.?15.

21. J. Vongkulbhisal, B. Chantaramolee, Y. Zhao, and W. S. Mohammed, Microwave Opt. Technol. Lett. 54, 1218 (2012).

22. Z. Vatansever, M. Brandt-Pearce, and C. L. Brown, in Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers (2017), p.?903.

23. B. Lin, X. Tang, Y. Li, M. Zhang, C. Lin, Z. Ghassemlooy, Y. Wei, Y. Wu, and H. Li, in Proceedings of the 16th International Conference on Optical Communications and Networks (ICOCN) (2017), p.?1.

24. R. Zhang, W. D. Zhong, K. Qian, and D. Wu, IEEE Access 5, 6087 (2017).

25. L. Li, P. Hu, C. Peng, G. Shen, and F. Zhao, in Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14) (2014), p.?331.

26. M. Yasir, S.-W. Ho, and B. N. Vellambi, J. Lightwave Technol. 32, 3306 (2014).

27. Z. Luo, W. Zhang, and G. Zhou, Opt. Rev. 23, 479 (2016).

28. S. H. Yang, H. S. Kim, Y. H. Son, and S. K. Han, J. Lightwave Technol. 32, 2480 (2014).

29. J. Quan, B. Bai, S. Jin, and Y. Zhang, Chin. Opt. Lett. 12, 052201 (2014).

30. H. Steendam, IEEE J. Sel. Areas Commun. 36, 23 (2018).

31. H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, J. Lightwave Technol. 31, 134 (2013).

32. A. Naz, N. U. Hassan, M. A. Pasha, H. Asif, T. M. Jadoon, and C. Yuen, in Proceedings of the IEEE 4th World Forum on Internet of Things (WF-IoT) (2018), p.?682.

33. B. Zhu, J. Cheng, Y. Wang, J. Yan, and J. Wang, IEEE J. Sel. Areas Commun. 36, 822 (2018).

34. Q.-L. Li, J.-Y. Wang, T. Huang, and Y. Wang, Opt. Eng. 55, 106103 (2016).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号