2019-03-25 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 17 , 2019    10.3788/COL201917.030602


2080 nm long-wavelength, high-power dissipative soliton resonance in a dumbbell-shaped thulium-doped fiber laser
Hua Wang1, Tuanjie Du2, Yanhong Li2, Jinhai Zou2, Kaijie Wang2, Fuyong Zheng1, Junfeng Fu1, Jihai Yang1, Hongyan Fu2, and Zhengqian Luo2
1 Information and Communication Branch, [State Grid Jiangxi Electric Power Corporation Ltd.], Nanchang 330077, China
2 Department of Electronic Engineering, [Xiamen University], Xiamen 361005, China

Chin. Opt. Lett., 2019, 17(03): pp.030602

DOI:10.3788/COL201917.030602
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.3510  140.4050  140.3410  

Abstract
We demonstrate a 2080 nm long-wavelength mode-locked thulium (Tm)-doped fiber laser operating in the dissipative soliton resonance (DSR) regime. The compact all-fiber dumbbell-shaped laser is simply constructed by a 50/50 fiber loop mirror (FLM), a 10/90 FLM, and a piece of large-gain Tm-doped double-clad fiber pumped by a 793 nm laser diode. The 10/90 FLM is not only used as an output mirror, but also acts as a periodical saturable absorber for initiating DSR mode locking. The stable DSR pulses are generated at the center wavelength as long as 2080.4 nm, and the pulse duration can be tunable from 780 to 3240 ps as the pump power is increased. The maximum average output power is 1.27 W, corresponding to a pulse energy of 290 nJ and a nearly constant peak power of 93 W. This is, to the best of our knowledge, the longest wavelength for DSR operation in a mode-locked fiber laser.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (690 KB)

Share:


Received:2018/10/24
Accepted:2018/12/20
Posted online:2019/2/28

Get Citation: Hua Wang, Tuanjie Du, Yanhong Li, Jinhai Zou, Kaijie Wang, Fuyong Zheng, Junfeng Fu, Jihai Yang, Hongyan Fu, and Zhengqian Luo, "2080 nm long-wavelength, high-power dissipative soliton resonance in a dumbbell-shaped thulium-doped fiber laser," Chin. Opt. Lett. 17(03), 030602(2019)

Note: This work was supported in part by the Research Fund of State Grid Corporation of China (No. 52183516000B), the National Natural Science Foundation of China (No. 61475129), the Natural Science Foundation of Fujian Province (No. 2017J06016), and the Fundamental Research Funds for the Central Universities (No. 20720180057).



References

1. S. D. Jackson, and T. A. King, J. Lightwave Technol. 17, 948 (1999).

2. M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, Z. Sun, D. Popa, T. Hasan, A. C. Ferrari, B. H. Chapman, S. V. Popov, and J. R. Taylor, in CLEO: 2013, OSA Technical Digest (online) (2013), paper?CW1M.5.

3. K. Kieu, and F. W. Wise, IEEE Photon. Technol. Lett. 21, 128 (2009).

4. F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, Opt. Express 16, 20471 (2008).

5. B. Ibarra-Escamilla, M. Durán-Sánchez, R. I. álvarez-Tamayo, B. Posada-Ramírez, P. Prieto-Cortés, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, J. Opt. 20, 085702 (2018).

6. M. Durán-Sánchez, R. I. álvarez-Tamayo, B. Posada-Ramírez, B. Ibarra-Escamilla, E. A. Kuzin, J. L. Cruz, and M. V. Andrés, IEEE Photon. Technol. Lett. 29, 1820 (2017).

7. N. M. Fried, and K. E. Murray, J. Endourol. 19, 25 (2005).

8. J. Luo, B. Sun, J. Ji, E. L. Tan, Y. Zhang, and X. Yu, Opt. Lett. 42, 1568 (2017).

9. G. Genty, J. M. Dudley, and B. J. Eggleton, Appl. Phys. B 94, 187 (2008).

10. K. Bremer, A. Pal, S. Yao, E. Lewis, R. Sen, T. Sun, and K. T. V. Grattan, Appl. Opt. 52, 3957 (2013).

11. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, Opt. Lett. 37, 3747 (2012).

12. Y. Meng, Y. Li, Y. Xu, and F. Wang, Sci. Rep. 7, 45109 (2017).

13. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, Opt. Express 20, 25077 (2012).

14. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, ACS Nano 4, 803 (2010).

15. M. Pawliszewska, Y. Ge, Z. Li, H. Zhang, and J. Sotor, Opt. Express 25, 16916 (2017).

16. B. Guo, Chin. Opt. Lett. 16, 020004 (2018).

17. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, Appl. Phys. Lett. 96, 111112 (2010).

18. N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, Phys. Lett. A 372, 3124 (2008).

19. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, Phys. Rev. A 78, 023830 (2008).

20. L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, and W. C. Xu, Opt. Express 21, 27087 (2013).

21. D. Li, D. Tang, L. Zhao, and D. Shen, J. Lightwave Technol. 33, 3781 (2015).

22. W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, Phys. Rev. A 79, 033840 (2009).

23. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, J. Opt. Soc. Am. B 25, 1972 (2008).

24. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, Opt. Express 17, 5580 (2009).

25. X. Li, X. Liu, X. Hu, L. Wang, H. Lu, Y. Wang, and W. Zhao, Opt. Lett. 35, 3249 (2010).

26. X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, and H. Ming, Opt. Lett. 37, 1334 (2012).

27. S. K. Wang, Q. Y. Ning, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, Opt. Express 21, 2402 (2013).

28. K. Krzempek, J. Sotor, and K. Abramski, Opt. Lett. 41, 4995 (2016).

29. G. Semaan, F. B. Braham, J. Fourmont, M. Salhi, F. Bahloul, and F. Sanchez, Opt. Lett. 41, 4767 (2016).

30. Y. Huang, Z. Luo, F. Xiong, Y. Li, M. Zhong, Z. Cai, H. Xu, and H. Fu, Opt. Lett. 40, 1097 (2015).

31. T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, Opt. Lett. 42, 462 (2017).

32. Y. Xu, Y. L. Song, G. G. Du, P. G. Yan, C. Y. Guo, G. L. Zheng, and S. C. Ruan, IEEE Photon. J. 7, 1502007 (2015).

33. J. Zhao, D. Ouyang, Z. Zheng, M. Liu, X. Ren, C. Li, S. Ruan, and W. Xie, Opt. Express 24, 12072 (2016).

34. S. Kharitonov, and C. S. Brès, in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), paper?CJ-13-4.

35. T. Du, W. Li, Q. Ruan, K. Wang, N. Chen, and Z. Luo, Appl. Phys. Express 11, 052701 (2018).

36. T. Wang, W. Ma, Q. Jia, Q. Su, P. Liu, and P. Zhang, IEEE J. Sel. Top. Quantum Electron. 23, 1102011 (2018).

37. B. Ibarra-Escamilla, M. Durán-Sánchez, B. Posada-Ramírez, H. Santiago-Hernández, R. I. álvarez-Tamayo, D. S. Llave, M. Bello-Jiménez, and E. A. Kuzin, IEEE Photon. J. 10, 1503907 (2018).

38. W. Ma, T. Wang, Q. Su, F. Wang, J. Zhang, C. Wang, and H. Jiang, Opt. Express 26, 12514 (2018).

39. N. J. Doran, and D. Wood, Opt. Lett. 13, 56 (1988).

40. D. Li, L. Li, J. Zhou, L. Zhao, D. Tang, and D. Shen, Sci. Rep. 6, 23631 (2016).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号