2019-03-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 12 , Vol. 16 , 2018    10.3788/COL201816.120601


Thermal characteristics of Fabry–Perot cavity based on regenerated fiber Bragg gratings
Yumin Zhang1, Yue Ren1, Mingli Dong2, Fanyong Meng1, and Lianqing Zhu1
1 Beijing Engineering Research Center of Optoelectronic Information and Instrument, [Beijing Information Science and Technology University], Beijing 100016, China
2 Beijing Key Laboratory of Optoelectronic Measurement Technology, [Beijing Information Science and Technology University], Beijing 100192 , China

Chin. Opt. Lett., 2018, 16(12): pp.120601

DOI:10.3788/COL201816.120601
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2370  060.3735  

Abstract
The Letter reports the thermal stability and strain response of Fabry–Perot (FP) cavity under different high temperatures. The FP cavity was made by thermal regeneration of two identical cascaded fiber Bragg gratings (FBGs). It is demonstrated that the FP cavity is capable of measuring temperatures from 300°C to 900°C with a temperature sensitivity of 15.97 pm/°C. The elongation of the fiber was observed through the drifted Bragg wavelength at 700°C or above when weight was loaded. The elongation was further inferred by the slight change in the interference spectra of the FP cavity at 900°C.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (733 KB)

Share:


Received:2018/8/8
Accepted:2018/10/24
Posted online:2018/11/27

Get Citation: Yumin Zhang, Yue Ren, Mingli Dong, Fanyong Meng, and Lianqing Zhu, "Thermal characteristics of Fabry–Perot cavity based on regenerated fiber Bragg gratings," Chin. Opt. Lett. 16(12), 120601(2018)

Note: This work was supported by the Program for Changjiang Scholars and Innovative Research Team in the University of Ministry of Education of China (No. IRT_16R07) and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (No. IDHT20170510). We thank the Beijing Laboratory of Optical Fiber Sensing and System for the use of their equipment. We thank Prof. Zhu for assistance with financial support.



References

1. X. Kong, S. C. M. Ho, G. S. Song, and C. S. Cai, J. Bridge Eng. 22, 11 (2017).

2. H. I. Kim, J. H. Han, and H. J. Bang, Wind Energy 17, 451 (2014).

3. S. J. Buggy, S. W. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, Meas. Sci. Technol. 27, 055201 (2016).

4. X. Wang, Y. Guo, and L. Xiong, Chin. Opt. Lett. 16, 070604 (2018).

5. H. F. Lima, R. D. Vicente, R. N. Nogueira, I. Abe, P. S. Andre, C. Fernandes, H. Rodrigues, H. Varum, H. J. Kalinowski, A. Costa, and J. D. Pinto, IEEE Sensors J. 8, 1236 (2008).

6. Z. Liu, and H. Y. Tam, Chin. Opt. Lett. 14, 120007 (2016).

7. M. Mieloszyk, M. Krawczuk, A. Zak, and W. Ostachowicz, Smart Mater. Struct. 19, 085009 (2010).

8. L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard, IEEE Trans. Nucl. Sci. 63, 2317 (2016).

9. X. G. Qiao, Z. H. Shao, W. J. Bao, and Q. Z. Rong, Sensors 17, 34 (2017).

10. S. K. Ibrahim, J. A. O’Dowd, V. Bessler, D. M. Karabacak, and J. M. Singer, Proc. SPIE 10208, 102080P (2017).

11. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, IEEE Photon. Technol. Lett. 16, 1864 (2004).

12. X. Fang, C. R. Liao, and D. N. Wang, Opt. Lett. 35, 1007 (2010).

13. S. Yang, D. Hu, and A. B. Wang, Opt. Lett. 42, 4219 (2017).

14. Y. H. Li, M. W. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, Opt. Express 17, 19785 (2009).

15. M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, Measure. Sci. Technol. 20, 115301 (2009).

16. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, J. Lightwave Technol. 15, 1470 (1997).

17. B. O. Guan, H. Y. Tam, C. Lu, and X. Y. Dong, IEEE Photon. Technol. Lett. 13, 591 (2001).

18. H. Bartelt, K. Schuster, S. Unger, C. Chojetzki, M. Rothhardt, and I. Latka, Appl. Opt. 46, 3417 (2007).

19. V. Oliveira, M. Muller, and H. J. Kalinowski, Appl. Opt. 50, E55 (2011).

20. M. Fokine, Opt. Lett. 27, 1016 (2002).

21. H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, IEEE Photon. Technol. Lett. 27, 58 (2015).

22. X. W. Shu, D. H. Zhao, L. Zhang, and I. Bennion, Appl. Opt. 43, 2006 (2004).

23. P. Holmberg, F. Laurell, and M. Fokine, Opt. Express 23, 27520 (2015).

24. L. Y. Shao, J. Canning, T. Wang, K. Cook, and H. Y. Tam, Acta Mater. 61, 6071 (2013).

25. Y. Li, N. Kuse, A. Rolland, Y. Stepanenko, C. Radzewicz, and M. E. Fermann, Opt. Express 25, 18017 (2017).

26. C. R. Liao, T. Y. Hu, and D. N. Wang, Opt. Express 20, 22813 (2012).

27. T. Wang, L. Y. Shao, J. Canning, and K. Cook, Appl. Opt. 52, 2080 (2013).

28. Y. Hibino, F. Hanawa, and M. Horiguchi, J. Appl. Phys. 65, 30 (1989).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号