2019-01-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 16 , 2018    10.3788/COL201816.111201


Effects of Casimir force on high-order sideband generation in an optomechanical system
Jie Yao, Yafei Yu, and Zhiming Zhang
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices (School of Information and Optoelectronic Science and Engineering)
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, [South China Normal University], Guangzhou 510006, China

Chin. Opt. Lett., 2018, 16(11): pp.111201

DOI:10.3788/COL201816.111201
Topic:Instrumentation, measurement and metrology
Keywords(OCIS Code): 120.4880  270.0270  

Abstract
We introduce a Casimir force in a conventional optomechanical system to study the high-order sideband generation. In this system, a nanosphere is placed near the moveable mirror of the conventional optomechanical system. The moveable mirror is coupled to the cavity field and the nanosphere by the optomechanical interaction and the Casimir interaction, respectively. We find that the amplitude and cutoff order of the high-order sideband can be enhanced by decreasing the sphere–mirror separation (increasing the Casimir force) and increasing the optomechanical coupling strength. Our proposal provides an alternative method for generating the high-order sidebands and for measuring the Casimir force.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (346 KB)

Share:


Received:2018/8/9
Accepted:2018/9/29
Posted online:2018/10/31

Get Citation: Jie Yao, Yafei Yu, and Zhiming Zhang, "Effects of Casimir force on high-order sideband generation in an optomechanical system," Chin. Opt. Lett. 16(11), 111201(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11574092, 61775062, 61378012, 91121023, and 60978009), the National Basic Research Program of China (No. 2013CB921804), and the Innovation Project of Graduate School of South China Normal University (No. 2017LKXM090).



References

1. T. J. Kippenberg, and K. J. Vahala, Science 321, 1172 (2008).

2. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

3. K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, Phys. Rev. Lett. 109, 013603 (2012).

4. P. Kómár, S. D. Bennett, K. Stannigel, S. J. M. Habraken, P. Rabl, P. Zoller, and M. D. Lukin, Phys. Rev. A 87, 013839 (2013).

5. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

6. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Phys. Rev. Lett. 107, 133601 (2011).

7. L. Ju, and D. G. Blair, Int. J. Mod. Phys. D 5, 101 (1996).

8. D. D. Serafino, S. Gomez, L. Milano, F. Riccio, and G. Toraldo, J. Global Optim. 48, 41 (2010).

9. S. Weis, S. Deléglise, R. Rivière, and E. Gavartin, Science 330, 1520 (2010).

10. H. Xiong, L. G. Si, A. S. Zheng, X. Yang, and Y. Wu, Phys. Rev. A 86, 013815 (2012).

11. P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, Phys. Rev. A 90, 043825 (2014).

12. Y. Xiao, Y. F. Yu, and Z. M. Zhang, Opt. Express 22, 17979 (2014).

13. Z. Q. Zhang, Z. H. Zhu, Z. H. Peng, C. L. Jiang, Y. F. Chai, and L. Tan, Chin. Opt. Lett. 16, 012701 (2017).

14. A. Dalafi, M. H. Naderi, and A. Motazedifard, Phys. Rev. A 97, 043619 (2018).

15. Q. H. Cai, Y. Xiao, Y. F. Yu, and Z. M. Zhang, Opt. Express 24, 20036 (2016).

16. M. Hafezi, and P. Rabl, Opt. Express 20, 7672 (2011).

17. G. L. Li, X. Xiao, Y. Li, and X. G. Wang, Phys. Rev. A 97, 023801 (2018).

18. H. Xiong, and Y. Wu, Laser Photon. Rev. 12, 1700305 (2018).

19. H. Xiong, L. G. Si, X. Y. Lü, X. X. Yang, and Y. Wu, Opt. Lett. 38, 353 (2013).

20. L. G. Si, L. X. Guo, H. Xiong, and Y. Wu, Phys. Rev. A 97, 023805 (2018).

21. Y. Jiao, H. Lü, J. Qian, Y. Li, and H. Jing, New J. Phys. 18, 083034 (2016).

22. Z. X. Liu, H. Xiong, and Y. Wu, Phys. Rev. A 97, 013801 (2018).

23. H. Xiong, L. G. Si, X. Y. Lü, and Y. Wu, Opt. Express 24, 5773 (2016).

24. H. Xiong, Y. W. Fan, X. Yang, and Y. Wu, Appl. Phys. Lett. 109, 061108 (2016).

25. H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

26. E. Elizalde, and A. Romeo, Am. J. Phys. 59, 711 (1991).

27. L. Spruch, Science 272, 1452 (1996).

28. U. Mohideen, and A. Roy, Phys. Rev. Lett. 81, 4549 (1998).

29. J. L. Garrett, D. A. Somers, and J. N. Munday, Phys. Rev. Lett. 120, 040401 (2018).

30. W. J. Nie, Y. H. Lan, Y. Li, and S. Y. Zhu, Phys. Rev. A 86, 063809 (2012).

31. W. J. Nie, Y. H. Lan, Y. Li, and S. Y. Zhu, Phys. Rev. A 88, 063849 (2013).

32. X. F. Liu, Y. Li, and H. Jing, Sci. Rep. 6, 27102 (2016).

33. C. W. Gardiner, and P. Zoller, Quantum Noise (Springer, 2004).

34. J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods (Wiley-Interscience, 1987).

35. H. B. Chan, Y. Bao, and J. Zou, Phys. Rev. Lett. 101, 030401 (2008).

36. D. E. Krause, R. S. Decca, D. López, and E. Fischbach, Phys. Rev. Lett. 98, 050403 (2007).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号