2019-03-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 16 , 2018    10.3788/COL201816.110603

High resolution inclinometer based on vertical pendulum and fiber Bragg grating Fabry–Perot cavity
Peng Cui1;2, Wentao Zhang2;3, and Ying Song1
1 School of Traffic and Transportation, [Shijiazhuang Tiedao University], Shijiazhuang 050043, China
2 State Key Laboratory of Transducer Technology, [Institute of Semiconductors, Chinese Academy of Sciences], Beijing 100083, China
3 [College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2018, 16(11): pp.110603

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.3735  060.2370  

In this paper, an inclinometer based on a vertical pendulum and a fiber Bragg grating Fabry–Perot cavity (FBG-FP) is proposed. A low-damping rotation structure is used to reduce the mechanical frictions of the pendulum system and induce a wavelength shift of FBG-FPs. We find that the sensitivity can be maximized by optimizing the parameters of the inclinometer. Using a high-resolution demodulation system, a sensitivity of 179.9 pm/(°), and a resolution better than 0.02″ can be achieved. Experiments also show that the proposed inclinometer has good linearity and repeatability.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (681 KB)


Posted online:2018/10/31

Get Citation: Peng Cui, Wentao Zhang, and Ying Song, "High resolution inclinometer based on vertical pendulum and fiber Bragg grating Fabry–Perot cavity," Chin. Opt. Lett. 16(11), 110603(2018)

Note: This work was supported by the National Key R&D Program of China (No. 2017YFB0405503), the Youth Innovation Promotion Association of CAS (No. 2016106), the Project of OFCMT (No. SKLD1703), and the Key Project of Hebei Educational Committee (No. BJ2016048).


1. H. Y. Chang, Y. C. Chang, and W. F. Liu, Sensors 17, 2922 (2017).

2. R. Aneesh, M. Maharana, P. Munendhar, H. Y. Tam, and S. K. Khijwania, Appl. Opt. 50, E172 (2011).

3. R. Yang, H. Bao, S. Zhang, K. Ni, Y. Zheng, and X. Dong, IEEE Sens. J. 15, 6381 (2015).

4. C.-L. Lee, W.-C. Shih, J.-M. Hsu, and J.-S. Horng, Opt. Express 22, 24646 (2014).

5. T. Osuch, K. Markowski, A. Manuj?o, and K. J?drzejewski, Sens. Actuators A 252, 76 (2016).

6. C. Guo, D. Chen, C. Shen, Y. Lu, and H. Liu, Opt. Fiber Technol. 24, 30 (2015).

7. B. J. Peng, Y. Zhao, Y. Zhao, and H. Yang, IEEE Sens. J. 6, 63 (2006).

8. P. Munendhar, R. Aneesh, and S. K. Khijwania, Appl. Opt. 53, 3574 (2014).

9. H.-J. Chen, L. Wang, and W. F. Liu, Appl. Opt. 47, 556 (2008).

10. H. Bao, X. Dong, L. Y. Shao, C. L. Zhao, C. C. Chan, and P. Shum, IEEE Photon. Technol. Lett. 22, 863 (2010).

11. Z. Liu, and H.-Y. Tam, Chin. Opt. Lett. 14, 120007 (2016).

12. B. O. Guan, H. Y. Tam, and S. Y. Liu, IEEE Photon. Technol. Lett. 16, 224 (2004).

13. X. Dong, C. Zhan, K. Hu, S. Ping, and C. C. Chan, IEEE Photon. Technol. Lett. 17, 2394 (2005).

14. W. Huang, W. Zhang, T. Zhen, and F. Zhang, IEEE Photon. Technol. Lett. 26, 1597 (2014).

15. Y. Wang, C. L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, Rev. Sci. Instrum. 82, 093106 (2011).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号