2019-03-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 16 , 2018    10.3788/COL201816.110401

Terahertz wave generation via pre-ionized air plasma
Kai Kang1, Liangliang Zhang1, Tong Wu2, Kai Li3, and Cunlin Zhang1
1 Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, [Capital Normal University], Beijing 1 00048, China
2 Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, [Beijing Institute of Technology], Beijing 100081, China
3 [Daheng New Epoch Technology Inc.], Beijing 100085, China

Chin. Opt. Lett., 2018, 16(11): pp.110401

Keywords(OCIS Code): 040.2235  350.5400  300.6380  

We report the terahertz (THz) wave generation from a single-color scheme modulated by pre-ionized air plasma via an orthogonal pumping geometry. It is found that the amplitude of the THz signal generated by the pump beam tends to decrease gradually with the increase of the modulation power. We believe that the ponderomotive force plays an important role in the process of the interaction between the pump beam and the pre-ionization beam. The hydrostatic state of the electrostatic separation field caused by the modulation beam will directly affect the generation efficiency of the THz wave. Our results contribute to further understanding of the theoretical mechanism and expanding of the practical applications of THz wave generation and modulation.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (588 KB)


Posted online:2018/11/1

Get Citation: Kai Kang, Liangliang Zhang, Tong Wu, Kai Li, and Cunlin Zhang, "Terahertz wave generation via pre-ionized air plasma," Chin. Opt. Lett. 16(11), 110401(2018)

Note: This work was funded by the National Natural Science Foundation of China (No. 61377109) and the National Keystone Basic Research Program (973 Program) (No. 2014CB339806).


1. D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).

2. J. T. Darrow, B. B. Hu, X. C. Zhang, and D. H. Auston, Opt. Lett. 15, 323 (1990).

3. N. M. Froberg, B. B. Hu, X. C. Zhang, and D. H. Auston, Appl. Phys. Lett. 59, 3207 (1991).

4. A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, and J. Larkin, Appl. Phys. Lett. 64, 1324 (1994).

5. X. Xie, J. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).

6. A. Mysyrowicz, B. Prade, G. Beaudin, G. Méchain, G. Patalano, and J. M. Munier, Opt. Lett. 27, 1944 (2002).

7. J. Dai, and X. C. Zhang, Appl. Phys. Lett. 94, 1210 (2009).

8. H. W. Du, H. Hoshina, C. Otani, and K. Midorikawa, Appl. Phys. Lett. 107, 2725 (2015).

9. M. Kress, T. L?ffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004).

10. T. L?ffler, M. Kress, M. Thomson, and H. G. Roskos, Acta Phys. Pol. 107, 99 (2005).

11. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, and H. Zhao, Appl. Phys. Lett. 92, 1759 (2008).

12. M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, and A. Lotti, Phys. Rev. Lett. 110, 253901 (2013).

13. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).

14. X. Y. Peng, C. Li, M. Chen, T. Toncian, R. Jung, and O. Willi, Appl. Phys. Lett. 94, 1120 (2009).

15. M. D. Thomson, V. Blank, and H. G. Roskos, Opt. Express 18, 23173 (2010).

16. T. I. Oh, Y. S. You, N. Jhajj, and E. W. Rosenthal, Appl. Phys. Lett. 102, 1210 (2013).

17. Y. Minami, T. Kurihara, K. Yamaguchi, M. Nakajima, and T. Suemoto, Appl. Phys. Lett. 102, 041105 (2013).

18. J. Shin, Z. Jin, T. Hosokai, and R. Kodama, in Asia Pacific Physics Conference (2013).

19. J. Zhao, L. Zhang, Y. Luo, T. Wu, C. Zhang, and Y. Zhao, Chin. Opt. Lett. 12, 083201 (2014).

20. H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, Phys. Rev. Lett. 71, 2725 (1993).

21. Y. Bai, J. Tang, R. Xu, and P. Liu, Chin. Opt. Lett. 14, 093201 (2016).

22. W. Wang, Z. Sheng, Y. Li, L. Chen, Q. Dong, X. Lu, J. Ma, and J. Zhang, Chin. Opt. Lett. 9, 110002 (2011).

23. Q. Wang, Y. Zhang, Z. Wang, J. Ding, Z. Liu, and B. Hu, Chin. Opt. Lett. 14, 110201 (2016).

24. Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, Appl. Phys. Lett. 99, 181114 (2011).

25. T. Wu, L. Dong, S. Huang, R. Zhang, S. Zhang, and H. Zhao, Appl. Phys. Lett. 112, 171106 (2018).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号