2019-03-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 16 , 2018    10.3788/COL201816.100604

All-fiber linear polarization and orbital angular momentum modes amplifier based on few-mode erbium-doped fiber and long period fiber grating
Jianfei Xing, Jianxiang Wen, Jie Wang, Fufei Pang, Zhenyi Chen, Yunqi Liu, and Tingyun Wang
Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, [Shanghai University], Shanghai 200444, China

Chin. Opt. Lett., 2018, 16(10): pp.100604

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2320  060.2410  220.4610  

A few-mode erbium-doped fiber (FM-EDF) is fabricated using modified chemical vapor deposition in combination with liquid solution. The core and cladding diameters of the fiber are approximately 19.44 and 124.12 μm, respectively. The refractive index difference is 0.98%, numerical aperture (NA) is 0.17, and normalized cut-off frequency at 1550 nm is 6.81. Therefore, it is a five-mode fiber, and can be used as a higher-order mode gain medium. Furthermore, a long period fiber grating (LPFG) is fabricated, which can convert LP01 mode to LP11 mode, and its conversion efficiency is up to 99%. The first-order orbital angular momentum (OAM) is also generated by combining the LPFG and polarization controller (PC). Then, an all-fiber amplification system based on the FM-EDF and LPFG, for LP11 mode and first-order OAM beams, is built up. Its on-off gain of the LP11 mode beam is 37.2 dB at 1521.2 nm. The variation, whose transverse mode field intensity of first-order OAM is increased with the increase of pumping power, is obvious. These show that both the LP11 mode and first-order OAM beams are amplified in the all-fiber amplification system. This is a novel all-fiber amplification scheme, which can be used in the optical communication fields.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (667 KB)


Posted online:2018/9/20

Get Citation: Jianfei Xing, Jianxiang Wen, Jie Wang, Fufei Pang, Zhenyi Chen, Yunqi Liu, and Tingyun Wang, "All-fiber linear polarization and orbital angular momentum modes amplifier based on few-mode erbium-doped fiber and long period fiber grating," Chin. Opt. Lett. 16(10), 100604(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 61635006, 61520106014, 61475096, 61422507, and 61635006) and the Science and Technology Commission of Shanghai Municipality (No. 15220721500).


1. G. Gardner, Ward’s Auto World 33, 60 (1997).

2. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, in National Fiber Optic Engineers Conference (Optical Society of America) (2011), paper?PDPB10.

3. Y. Xie, S. Fu, M. Zhang, M. Tang, P. Shum, and D. Liu, Opt. Commun. 306, 185 (2013).

4. B. Zhu, T. Taunay, M. Yan, J. Fini, M. Fishteyn, E. Monberg, and F. Dimarcello, Opt. Express 18, 11117 (2010).

5. B. J. Ainslie, J. Lightwave Technol. 9, 220 (1991).

6. Q. Zhao, Z. Zhang, N. Zhao, and X. Li, Laser Optoelectron. Progress 53, 030602 (2016).

7. Z. Zhang, Q. Mo, C. Guo, N. Zhao, C. Du, and X. Li, in Asia Communications and Photonics Conference (2016), paper?ATh3B-5.

8. S. Jain, Y. Jung, T. C. May-Smith, S. U. Alam, J. K. Sahu, and D. J. Richardson, Opt. Express 22, 29031 (2014).

9. Y. Jung, Q. Kang, R. Sidharthan, D. Ho, S. Yoo, P. Gregg, S. Ramachandran, S. U. Alam, and D. J. Richardson, J. Lightwave Technol. 35, 430 (2017).

10. L. Zhu, J. Li, G. Zhu, L. L. Wang, C. Cai, A. Wang, S. Li, M. Tang, Z. He, Y. Yu, C. Du, W. Luo, J. Liu, and J. Du, in Optical Fiber Communication Conference (2018), paper?W4C-4.

11. Y. Luo, W. Zhou, L. Wang, A. Wang, and J. Wang, in Optical Fiber Communication Conference (2018), paper?M4D.2.

12. Y. Zhao, Y. Liang, X. Su, W. Zhou, Y. Luo, Z. Huang, and J. Wang, in Optical Fiber Communications Conference and Exposition (2018), paper?W2A.24.

13. J. Liu, H. Wang, S. Chen, S. Zheng, L. Zhu, A. Wang, N. Zhou, S. Li, S. Li, C. Du, Q. Mo, and J. Wang, in Optical Fiber Communication Conference (2017), paper?W2A-21.

14. P. Wang, J. Wen, Y. Dong, F. Pang, T. Wang, and Z. Chen, in Asia Communications and Photonics Conference (2013), paper?AW4C.5.

15. J. Wen, P. Wang, Y. Dong, F. Pang, X. Zeng, Z. Chen, and T. Wang, in CLEO (2013), paper?JTu4A.

16. E. M. Dianov, M. A. Mel’kumov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Gur’yanov, and I. A. Bufetov, Quant. Electron. 39, 1099 (2009).

17. Y. Luo, J. Wen, J. Zhang, J. Canning, and G.-D. Peng, Opt. Lett. 37, 3447 (2012).

18. P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, 1999).

19. V. Dvoyrin, V. Mashinsky, E. Dianov, A. Umnikov, M. Yashkov, and A. Guryanov, in European Conference on Optical Communication (2005), paper?Th3.3.5.

20. A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, Opt. Mater. 33, 631 (2011).

21. S. Ramachandran, Z. Wang, and M. Yan, Opt. Lett. 27, 698 (2002).

22. G. Rego, R. Falate, J. L. Santos, H. M. Salgado, J. L. Fabris, S. L. Semjonov, and E. M. Dianov, Opt. Lett. 30, 2065 (2005).

23. I. Giles, A. Obeysekara, R. Chen, D. Giles, F. Poletti, and D. Richardson, IEEE Photonics Technol. Lett. 24, 1922 (2012).

24. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, J. Lightwave Technol. 27, 857 (2009).

25. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, Opt. Express 24, 6186 (2016).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号