2018-11-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 16 , 2018    10.3788/COL201816.100603


Plasmonic gold nanoshell induced spectral effects and refractive index sensing properties of excessively tilted fiber grating
Binbin Luo, Huafeng Lu, Shenghui Shi, Mingfu Zhao, Jiao Lu, Yajie Wang, and Xin Wang
Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, [Chongqing University of Technology], Chongqing 400054, China

Chin. Opt. Lett., 2018, 16(10): pp.100603

DOI:10.3788/COL201816.100603
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2370  120.0280  060.3735  

Abstract
We demonstrate a fiber refractive index (RI) sensor based on an excessively tilted fiber grating (ExTFG) immobilized by large-size plasmonic gold nanoshells (GNSs). The GNSs are covalently linked on ExTFG surface. Experimental results demonstrate that both the intensity of the transverse magnetic (TM) and transverse electric (TE) modes of ExTFG are significantly modulated by the localized surface plasmon resonance (LSPR) of GNSs due to the wide-range absorption band. The wavelength RI sensitivities of the TM and TE modes in the low RI range of 1.333–1.379 are improved by ~25% and ~14% after GNSs immobilization, respectively, and the intensity RI sensitivities are ~599%/RIU and ~486%/RIU, respectively.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (801 KB)

Share:


Received:2018/7/13
Accepted:2018/8/30
Posted online:2018/9/25

Get Citation: Binbin Luo, Huafeng Lu, Shenghui Shi, Mingfu Zhao, Jiao Lu, Yajie Wang, and Xin Wang, "Plasmonic gold nanoshell induced spectral effects and refractive index sensing properties of excessively tilted fiber grating," Chin. Opt. Lett. 16(10), 100603(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 61875026 and 61505017), the Foundation and Cutting-Edge Research Projects of the Chongqing Science and Technology Commission (No. cstc2018jcyjAX0122), and the Graduate Student Innovation Program of the Chongqing University of Technology (No. ycx2018238).



References

1. Y. Huang, Z. Tian, L. P. Sun, D. Sun, J. Li, Y. Ran, and B. O. Guan, Opt. Express 23, 26962 (2015).

2. Y. Wu, B. C. Yao, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, Opt. Lett. 39, 1235 (2014).

3. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, Opt. Lett. 34, 322 (2009).

4. S. Sridevi, K. S. Vasu, S. Sampath, S. Asokan, and A. K. Sood, J. Biophotonics 9, 760 (2016).

5. B. C. Yao, Y. Wu, D. J. Webb, J. H. Zhou, Y. J. Rao, A. Pospori, C. B. Yu, Y. Gong, Y. F. Chen, and Z. G. Wang, IEEE Photonics Technol. Lett. 27, 2399 (2015).

6. G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, and M. Giordano, Biosens. Bioelectron. 80, 590 (2016).

7. B. Gu, W. Qi, J. Zheng, Y. Zhou, P. P. Shum, and F. Luan, Opt. Lett. 39, 22 (2014).

8. B. B. Luo, S. X. Wu, W. G. Zou, Z. H. Zhang, M. F. Zhao, S. H. Shi, Y. Liu, X. F. Xi, Z. Zeng, W. W. Liang, Z. J. Yan, and L. Zhang, Biosens. Bioelectron. 86, 1054 (2016).

9. T. Guo, J. Lightwave Technol. 35, 3323 (2017).

10. C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, Biosens. Bioelectron. 92, 449 (2017).

11. J. Cao, T. Sun, and K. T. V. Grattan, Sens. Actuators B 195, 332 (2014).

12. H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, Opt. Express 20, 21693 (2012).

13. J. Cao, M. H. Tu, T. Sun, and K. T. Grattan, Sens. Actuators B 181, 611 (2013).

14. B. Doherty, M. Thiele, S. Warren-Smith, E. Schartner, H. Ebendorff-Heidepriem, W. Fritzsche, and M. A. Schmidt, Opt. Lett. 42, 4395 (2017).

15. S. Lepinay, A. Staff, A. Ianou, and J. Albert, Biosens. Bioelectron. 52, 337 (2014).

16. J. J. Lao, L. Z. Han, Z. Wu, X. J. Zhang, Y. Y. Huang, Y. Tang, and T. Guo, J. Lightwave Technol. (2018).

17. N. N. Peter, I. S. Lim, D. Mott, H. Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C. J. Zhong, J. Phys. Chem. C 111, 6601 (2007).

18. J. Burgmeier, A. Feizpour, W. Schade, and B. M. Reinhard, Opt. Lett. 40, 546 (2015).

19. K. Zhou, L. Zhang, X. Chen, and I. Bennion, Opt. Lett. 31, 1193 (2006).

20. Z. Yan, H. Wang, C. Wang, Z. Sun, G. Yin, K. Zhou, Y. Wang, W. Zhao, and L. Zhang, Opt. Express 24, 12107 (2016).

21. F. Tam, C. Moran, and N. Halas, J. Phys. Chem. B 108, 17290 (2004).

22. Y. F. Xu, B. B. Luo, S. H. Shi, Y. Wang, X. Zou, J. Lu, P. Tang, and M. F. Zhao, in Proceedings of IEEE 16th International Conference on Optical Communications and Networks (2017).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号