2018-11-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 16 , 2018    10.3788/COL201816.100602


Passive phase noise compensation for fiber-optic radio frequency transfer with a nonsynchronized source
Tiancheng Lin1, Guiling Wu1;2, Hongwei Li1, Guoyong Wang3, and Jianping Chen1;2
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, [Shanghai Jiao Tong University], Shanghai 200240, China
2 [Shanghai Key Laboratory of Navigation and Location-Based Services], Shanghai 2 002 40, China
3 [China Academy of Space Technology (Xi’an)], Xi’an 710000, China

Chin. Opt. Lett., 2018, 16(10): pp.100602

DOI:10.3788/COL201816.100602
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2360  120.3930  120.3940  

Abstract
We propose a passive compensation fiber-optic radio frequency (RF) transfer scheme with a nonsynchronized RF stable source during a round-trip time, which can avoid high-precision phase-locking and efficiently suppress the effect of backscattering only using two wavelengths at the same time. A stable frequency signal is directly reproduced by frequency mixing at the remote site. The proposed scheme is validated by the experiment over a 40 km single mode fiber spool using nonsynchronized common commercial RF sources. The influence of the stability of nonsynchronized RF sources on the frequency transfer is investigated over different length fiber links.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (677 KB)

Share:


Received:2018/7/11
Accepted:2018/8/30
Posted online:2018/9/20

Get Citation: Tiancheng Lin, Guiling Wu, Hongwei Li, Guoyong Wang, and Jianping Chen, "Passive phase noise compensation for fiber-optic radio frequency transfer with a nonsynchronized source," Chin. Opt. Lett. 16(10), 100602(2018)

Note: This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 61627817 and 61535006).



References

1. S. Huang, and R. L. Tjoelker, in Precise Time and Time Interval Systems and Applications Meeting, Long Beach, California 15, (2012), p.?2012.

2. L. Yu, R. Wang, L. Lu, Y. Zhu, C. Wu, B. Zhang, and P. Wang, Opt. Lett. 39, 5255 (2014).

3. H. Li, G. Wu, J. Zhang, J. Shen, and J. Chen, Opt. Lett. 41, 5672 (2016).

4. R. Huang, G. Wu, H. Li, and J. Chen, Opt. Lett. 41, 626 (2016).

5. W. Li, W. T. Wang, W. H. Sun, W. Y. Wang, and N. H. Zhu, Opt. Lett. 39, 4294 (2014).

6. F. Yin, A. Zhang, Y. Dai, T. Ren, K. Xu, J. Li, J. Lin, and G. Tang, Opt. Express 22, 878 (2014).

7. Y. He, B. J. Orr, K. G. H. Baldwin, M. J. Wouters, A. N. Luiten, G. Aben, and R. B. Warrington, Opt. Express 21, 18754 (2013).

8. Z. Wu, Y. Dai, F. Yin, K. Xu, J. Li, and J. Lin, Opt. Lett. 38, 1098 (2013).

9. J. Wei, F. Zhang, Y. Zhou, D. Ben, and S. Pan, Opt. Lett. 39, 3360 (2014).

10. R. L. Tjoelker, M. Calhoun, P. F. Kuhnle, J. Lauf, and R. L. Sydnor, in Proceedings of the 35th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting (2003), p.?167.

11. L. Yu, R. Wang, L. Lu, Y. Zhu, J. Zheng, C. Wu, B. Zhang, and P. Wang, Opt. Express 23, 19783 (2015).

12. X. Zhu, B. Wang, C. Gao, and L. J. Wang, Chin. Phys. B 25, 264 (2016).

13. C. Gao, B. Wang, W. L. Chen, Y. Bai, J. Miao, X. Zhu, T. C. Li, and L. J. Wang, Opt. Lett. 37, 4690 (2012).

14. C. Liu, T. Jiang, M. Chen, S. Yu, R. Wu, J. Shang, J. Duan, and W. Gu, Opt. Express 24, 23376 (2016).

15. J. Shen, G. Wu, L. Hu, W. Zou, and J. Chen, Opt. Lett. 39, 2346 (2014).

16. O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, Appl. Phys. B 98, 723 (2010).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号