2018-09-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 16 , 2018    10.3788/COL201816.090604


Comparative study on reduced impacts of Brillouin pump depletion and nonlinear amplification in coded DBA-BOTDA
Kai Lin, Xinhong Jia, Huiliang Ma, Cong Xu, Xuan Zhang, and Lei Ao
College of Physics and Electronic Engineering, [Sichuan Normal University], Chengdu 610101, China

Chin. Opt. Lett., 2018, 16(09): pp.090604

DOI:10.3788/COL201816.090604
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2370  060.4370  

Abstract
The impacts of Brillouin pump depletion and nonlinear amplification in coded long-range Brillouin optical time-domain analysis (BOTDA) based on distributed Brillouin amplification (DBA) were studied. The error of Brillouin frequency shift (BFS) due to Brillouin pump depletion was compared for DBA-BOTDA using non-cyclic and cyclic coding. For non-cyclic coding, significant over- and under-shoots of BFS were found in the range with larger BFS variation, such as hot spot. The impact of Brillouin pump depletion can be reduced considerably by cyclic coding. Furthermore, to compensate the BFS error due to nonlinear amplification, a simple and effective log linearization was proposed and demonstrated.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1328 KB)

Share:


Received:2018/5/14
Accepted:2018/7/25
Posted online:2018/8/31

Get Citation: Kai Lin, Xinhong Jia, Huiliang Ma, Cong Xu, Xuan Zhang, and Lei Ao, "Comparative study on reduced impacts of Brillouin pump depletion and nonlinear amplification in coded DBA-BOTDA," Chin. Opt. Lett. 16(09), 090604(2018)

Note: This work was supported by the National Natural Science Foundation of China (NSFC) (No. 61205079), the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZA0401), and the Open Experimental Programs of Sichuan Normal University (No. KFSY2017083). The authors acknowledge Prof. Zinan Wang and Dr. Yun Fu from University of Electronic Science and Technology of China (UESTC) for valuable discussions and experimental help.



References

1. B. Wang, X. Fan, J. Du, and Z. He, Chin. Opt. Lett. 15, 120601 (2017).

2. M. Zhang, X. Bao, J. Chai, Y. Zhang, R. Liu, H. Liu, Y. Liu, and J. Zhang, Chin. Opt. Lett. 15, 080603 (2017).

3. D. Williams, X. Bao, and L. Chen, Photon. Res. 2, 1 (2014).

4. M. Alem, M. A. Soto, and L. Thévenaz, Opt. Express 23, 29514 (2015).

5. S. M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, M. González-Herráez, and L. Thévenaz, Opt. Lett. 36, 97 (2011).

6. R. Bernini, A. Minardo, and L. Zeni, Opt. Express 19, 23845 (2011).

7. M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, Opt. Lett. 35, 259 (2010).

8. H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, Opt. Lett. 35, 1503 (2010).

9. M. A. Soto, S. L. Floch, and L. Thévenaz, Opt. Express 21, 16390 (2013).

10. F. Wang, C. Zhu, C. Cao, and X. Zhang, Opt. Express 25, 3504 (2017).

11. F. Baronti, A. Lazzeri, R. Romcella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. D. Pasquale, Electron. Lett. 46, 1221 (2010).

12. M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. D. Pasquale, Opt. Lett. 38, 4162 (2013).

13. Y. Muanenda, M. Taki, and F. D. Pasquale, Opt. Lett. 39, 5411 (2014).

14. H. Iribas, A. Loayssa, F. Slorian, M. Llera, and S. L. Floch, Opt. Express. 25, 8787 (2017).

15. S. L. Floch, F. Sauser, M. Llera, and E. Rochat, J. Lightwave Technol. 33, 2623 (2015).

16. X. H. Jia, Y. J. Rao, L. Chang, C. Zhang, and Z. L. Ran, J. Lightwave Technol. 28, 1624 (2010).

17. F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Casta?ón, L. Thévenaz, and M. González-Herráez, J. Lightwave Technol. 28, 2162 (2010).

18. X. H. Jia, Y. J. Rao, C. X. Yuan, J. Li, X. D. Yan, Z. N. Wang, W. L. Zhang, H. Wu, Y. Y. Zhu, and F. Peng, Opt. Express 21, 24611 (2013).

19. M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. H. Chin, J. D. Ania-Casta?on, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, J. Lightwave Technol. 32, 152 (2014).

20. J. Urricelqui, M. Sagues, and A. Loayssa, Opt. Express 23, 30448 (2015).

21. H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W. L. Zhang, IEEE Photonics Technol. Lett. 28, 1142 (2016).

22. J. J. Mompó, J. Urricelqui, and A. Loayssa, Opt. Express 24, 12672 (2016).

23. X. H. Jia, H. Q. Chang, L. Ao, X. L. Ji, C. Xu, and W. L. Zhang, Opt. Express 24, 14079 (2016).

24. Y. H. Kim, and K. Y. Song, Opt. Express 25, 14098 (2017).

25. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

26. H. Y. Song, and S. W. Golomb, IEEE Trans. Inf. Theory 40, 504 (1994).

27. H. F. Martins, K. Shi, B. C. Thomsen, S. Martin-Lopez, M. Gonzalez-Herraez, and S. J. Savory, Opt. Express 24, 22303 (2016).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387