2019-03-23 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 16 , 2018    10.3788/COL201816.090401

A proposed approach for detecting terahertz pulses by using double few-cycle laser pulses with opposite carrier envelope phases
Kejia Wang1;2, Xinyang Gu1, Zhenwei Zhang2, Zhengang Yang1, Jinsong Liu1, and Shenglie Wang1
1 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, [Huazhong University of Science and Technology], Wuhan 430074, China
2 Beijing Advanced Innovation Center for Imaging Technology and Key Laboratory of Terahertz Optoelectronics (MoE), Department of Physics, [Capital Normal University], Beijing 100048, China

Chin. Opt. Lett., 2018, 16(09): pp.090401

Keywords(OCIS Code): 040.2235  320.7100  190.7110  

Previous research shows that few-cycle laser (FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz (THz) pulses. As we know, it is very difficult to stabilize the carrier envelope phase (CEP) of FCL pulses, i.e., there are some random fluctuations for the CEP. Here we theoretically investigate the influence of such instability on the accuracy of THz detection. Our results show that although there is an optimum CEP for THz detection, the fluctuations of the CEP will lead to terrible thorns on the detected THz waveform. In order to solve this problem, we propose an approach using two few-cycle laser pulses with opposite CEPs, i.e., their CEPs are differed by π.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (506 KB)


Posted online:2018/8/30

Get Citation: Kejia Wang, Xinyang Gu, Zhenwei Zhang, Zhengang Yang, Jinsong Liu, and Shenglie Wang, "A proposed approach for detecting terahertz pulses by using double few-cycle laser pulses with opposite carrier envelope phases," Chin. Opt. Lett. 16(09), 090401(2018)

Note: K. J. Wang thanks Dr. Hu Wang for his previous calculation about this work. This research was supported by the National Natural Science Foundation of China (Nos. 61475054 and 11574105) and the Fundamental Research Funds for the Central Universities (No. 2017KFYXJJ029).


1. M. Thomson, M. Kre?, T. L?ffler, and H. Roskos, Laser Photonics Rev. 1, 349 (2007).

2. J. Dai, J. Liu, and X.-C. Zhang, IEEE J. Sel. Top. Quantum Electron. 17, 183 (2011).

3. J. Dai, B. Clough, I.-C. Ho, X. Lu, J. Liu, and X.-C. Zhang, IEEE Trans. THz Sci. Tech. 1, 274 (2011).

4. B. Clough, J. Dai, and X.-C. Zhang, Mater. Today 15, 50 (2012).

5. F. Wang, Chin. Opt. Lett. 12, S23202 (2014).

6. Y. Bai, J. Tang, R. Xu, and P. Liu, Chin. Opt. Lett. 14, 093201 (2016).

7. E. Matsubara, M. Nagai, and M. Ashida, Appl. Phys. Lett. 101, 011105 (2012).

8. T. I. Oh, Y. J. Yoo, Y. S. You, and K. Y. Kim, Appl. Phys. Lett. 105, 041103 (2014).

9. V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, and S. L. Chin, Phys. Rev. Lett. 116, 063902 (2016).

10. J. L. Liu, J. M. Dai, S. L. Chin, and X.-C. Zhang, Nat. Photonics 4, 627 (2010).

11. B. Clough, J. L. Liu, and X.-C. Zhang, Opt. Lett. 35, 3544 (2010).

12. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Opt. Express 15, 4577 (2007).

13. K. Y. Kim, Phys. Plasmas 16, 056706 (2009).

14. H. Wang, N. Li, Y. Bai, P. Liu, Z. Wang, and C. Liu, Opt. Express 25, 30987 (2017).

15. C. Lu, C. Zhang, L. Zhang, X. Wang, and S. Zhang, Phys. Rev. A 96, 053402 (2017).

16. J. Zhao, W. Liu, S. Li, D. Lu, Y. Zhang, Y. Peng, Y. Zhu, and S. Zhuang, Photon. Res. 6, 296 (2018).

17. J. Dai, X. Xie, and X.-C. Zhang, Phys. Rev. Lett. 97, 103903 (2006).

18. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, and C. Fletcher, Appl. Phys. Lett. 92, 011131 (2008).

19. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, Nature 414, 182 (2001).

20. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Science 320, 1614 (2008).

21. E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, IEEE J. Sel. Top. Quantum Electron. 21, 1 (2015).

22. J. Liu, H. Wang, K. Wang, Z. Yang, and S. Wang, Opt. Lett. 38, 1104 (2013).

23. T. J. Yu, and C. H. Nam, Prog. Quantum Electron. 36, 541 (2012).

24. P. A. Roos, X. Li, R. P. Smith, J. A. Pipis, T. M. Fortier, and S. T. Cundiff, Opt. Lett. 30, 735 (2005).

25. A. Vernaleken, B. Schmidt, M. Wolferstetter, T. W. H?nsch, R. Holzwarth, and P. Hommelhoff, Opt. Express 20, 18387 (2012).

26. H. Wang, K. Wang, J. Liu, H. Dai, and Z. Yang, Opt. Express 20, 19264 (2012).

27. A. Vernaleken, B. Schmidt, M. Wolferstetter, T. W. H?nsch, R. Holzwarth, and P. Hommelhoff, Opt. Express 20, 18387 (2012).

28. B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Gro?, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, Nat. Photonics 8, 37 (2014).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号