2018-12-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 16 , 2018    10.3788/COL201816.082702


Multipartite entanglement generation with dipole induced transparency effect in indirectly coupled dipole-microcavity systems
Zhaohui Peng1, Chunxia Jia1;2, Yuqing Zhang1, Zhonghua Zhu1, and Xiaojuan Liu1
1 Institute of Modern Physics and Department of Physics, [Hunan University of Science and Technology], Xiangtan 41 1 201 , China
2 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, [Hunan Normal University], Changsha 410081, China

Chin. Opt. Lett., 2018, 16(08): pp.082702

DOI:10.3788/COL201816.082702
Topic:Quantum optics
Keywords(OCIS Code): 270.5580  270.5585  

Abstract
We propose a feasible scheme of generating multipartite entanglement with the dipole induced transparency (DIT) effect in indirectly coupled dipole-microcavity systems. It is shown that the transmission spectrum is closely related with the interference of dipole-microcavity systems, and we can generate different classes of multipartite entanglement, e.g., the Greenberger–Horne–Zeilinger state, the W state, and the Dicke state, of the dipole emitters just by choosing an appropriate frequency of the incident photon. Benefiting from the DIT effect, the schemes may work in the bad or low-Q cavity regime only if the large Purcell factor of the dipole-microcavity system is fulfilled, and they are also insensitive to experimental noise, which may be feasible with present accessible technology.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (271 KB)

Share:


Received:2018/4/5
Accepted:2018/6/13
Posted online:2018/7/27

Get Citation: Zhaohui Peng, Chunxia Jia, Yuqing Zhang, Zhonghua Zhu, and Xiaojuan Liu, "Multipartite entanglement generation with dipole induced transparency effect in indirectly coupled dipole-microcavity systems," Chin. Opt. Lett. 16(08), 082702(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11405052, 11504104, and 11704115) and the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control (No. QSQC1409).



References

1. A. Karlsson, and M. Bourennane, Phys. Rev. A 58, 4394 (1998).

2. M. Hillery, V. Buzek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).

3. P. W. Shor, Phys. Rev. A 52, R2493 (1995).

4. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).

5. W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).

6. R. H. Dicke, Phys. Rev. 93, 99 (1954).

7. A. R. Usha Devi, R. Prabhu, and A. K. Rajagopal, Phys. Rev. Lett. 98, 060501 (2007).

8. M. Bourennane, M. Eibl, S. Gaertner, N. Kiesel, C. Kurtsiefer, and H. Weinfurter, Phys. Rev. Lett. 96, 100502 (2006).

9. N. Kiesel, C. Schmid, G. Toth, E. Solano, and H. Weinfurter, Phys. Rev. Lett. 98, 063604 (2007).

10. S. Sun, H. Kim, G. S. Solomon, and E. Waks, Nat. Nanotech. 11, 539 (2016).

11. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, Science 320, 1326 (2008).

12. E. Waks, and J. Vuckovic, Phys. Rev. Lett. 96, 153601 (2006).

13. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, Opt. Express 16, 12154 (2008).

14. L. Ge, L. Feng, and H. G. L. Schwefel, Photon. Res. 5, OM1 (2017).

15. Y. Zhang, Z. Zhu, Z. H. Peng, C. Jiang, Y. Chai, and L. Tan, Chin. Opt. Lett. 16, 012701 (2018).

16. Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang, Phys. Rev. A 96, 023826 (2017).

17. X. F. Liu, T. J. Wang, and C. Wang, Opt. Lett. 43, 326 (2018).

18. Y. Guo, L. Zhou, L. M. Kuang, and C. P. Sun, Phys. Rev. A 78, 013833 (2008).

19. T. J. Wang, Y. Lu, and G. L. Long, Phys. Rev. A 86, 042337 (2012).

20. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, Phys. Rev. B 78, 085307 (2008).

21. Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, Phys. Rev. A 86, 034305 (2012).

22. T. Liu, G. Lin, F. Zhou, L. Deng, S. Gong, and Y. Niu, Chin. Opt. Lett. 15, 092702 (2017).

23. C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, Sci. China-Phys. Mech. Astron. 59, 1003155 (2016).

24. R. Zhao, and R. Liang, Chin. Opt. Lett. 14, 062701 (2016).

25. H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, Nat. Photon. 7, 373 (2013).

26. Z. H. Peng, L. M. Kuang, J. Zou, Y. Q. Zhang, and X. J. Liu, Quantum Inf. Process. 14, 2833 (2015).

27. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, Phys. Rev. B 80, 205326 (2009).

28. J. H. An, M. Feng, and C. H. Oh, Phys. Rev. A 79, 032303 (2009).

29. F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, Phys. Rev. A 82, 052315 (2010).

30. Q. Chen, W. Yang, M. Feng, and J. Du, Phys. Rev. A 83, 054305 (2011).

31. R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992).

32. D. F. Walls, and G. J. Milburn, Quantum Optics , 2nd ed. (Springer, 2008).

33. H. Rokhsari, and K. J. Vahala, Phys. Rev. Lett. 92, 253905 (2004).

34. Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, Phys. Rev. A 84, 011805(R) (2011).

35. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, Nat. Phys. 3, 253 (2007).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号