2018-08-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 16 , 2018    10.3788/COL201816.081601

Linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces
Han Sun1, Yaxin Zhang1, Kailong Wang1, Yuncheng Zhao1, Wei Kou1, Shixiong Liang2, Jiaguang Han3, and Ziqiang Yang1
1 Terahertz Science Cooperative Innovation Center, [University of Electronic Science and Technology of China], Chengdu 61 0054, China
2 National Key Laboratory of Application Specific Integrated Circuit, [Hebei Semiconductor Research Institute], Shijiazhuang 050051, China
3 Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, [Tianjin University], Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin 3 00072, China

Chin. Opt. Lett., 2018, 16(08): pp.081601

Keywords(OCIS Code): 160.3918  050.2230  350.2770  

In this Letter, we demonstrate a linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces, which integrated the frequency selectivity of a split ring resonator metasurface and the polarization selectivity of a metallic grating surface. Since the double-layer can reduce the loss, and the Fabry–Perot like resonant effect between the two layers can improve the conversion efficiency, this converter can rotate the incident y-polarized terahertz wave into an x-polarized transmitted wave with relatively low loss and high efficiency. Experimental results show that an average conversion efficiency exceeding 75% from 0.25 to 0.65 THz with the highest efficiency of 90% at 0.43 THz with only ?2 dB loss has been achieved.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (518 KB)


Posted online:2018/7/30

Get Citation: Han Sun, Yaxin Zhang, Kailong Wang, Yuncheng Zhao, Wei Kou, Shixiong Liang, Jiaguang Han, and Ziqiang Yang, "Linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces," Chin. Opt. Lett. 16(08), 081601(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 61531010, 61270011, 91438118, and 61501094) and the National Key Basic Research Program of China (No. 2014CB339806).


1. V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. De Groot, and N. I. Zheludev, Phys. Rev. Lett. 109, 243904 (2012).

2. N. I. Zheludev, and Y. S. Kivshar, Nat. Mater. 11, 917 (2012).

3. H. Zhang, P. Guo, P. Chen, S. Chang, and J. Yuan, J. Opt. Soc. Am. B 26, 101 (2009).

4. Y. Zhao, and A. Alù, Phys. Rev. B 84, 205428 (2011).

5. B. Scherger, C. J?rdens, and M. Koch, Opt. Express 19, 4528 (2011).

6. Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Y. Li, J. Han, and W. Zhang, Chin. Opt. Lett. 16, 050002 (2018).

7. G. Litmanovitch, D. Rrotshild, and A. Abramovich, Chin. Opt. Lett. 15, 011101 (2017).

8. J. Liu, P. Li, Y. Chen, X. Song, F. Qi, B. Zheng, J. He, Q. Wen, and W. Zhang, Chin. Opt. Lett. 14, 052301 (2016).

9. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, Nat. Photon. 3, 148 (2009).

10. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, Rev. Mod. Phys. 83, 543 (2011).

11. Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, Appl. Phys. Lett. 105, 181111 (2014).

12. X. Wen, and J. Zheng, Opt. Express 22, 28292 (2014).

13. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, Opt. Express 22, 29143 (2014).

14. X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, IEEE Trans. Antennas Propag. 63, 3522 (2015).

15. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, Science 340, 1304 (2013).

16. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, Appl. Phys. Lett. 103, 171107 (2013).

17. R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, Adv. Mater. 27, 1201 (2015).

18. D. J. Liu, Z. Y. Xiao, X. L. Ma, and Z. H. Wang, Opt. Commun. 354, 272 (2015).

19. S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, Annalen Der Physik 529, 1700151 (2017).

20. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, Opt. Lett. 40, 3185 (2015).

21. Y. J. Chiang, and T. J. Yen, Appl. Phys. Lett. 102, 11129 (2013).

22. X. Liu, X. Chen, E. P. J. Parrott, and E. Pickwell-MacPherson, Photon. Res. 5, 299 (2017).

23. X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, Sci. Rep. 7, 6817 (2017).

24. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, Adv. Mater. 27, 6630 (2015).

25. S.-T. Xu, F. Fan, M. Chen, Y.-Y. Ji, and S.-J. Chang, Appl. Phys. Lett. 111, 031107 (2017).

26. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 63908 (2007).

27. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, Opt. Lett. 34, 274 (2009).

28. F. Fan, S.-T. Xu, X.-H. Wang, and S.-J. Chang, Opt. Express 24, 26431 (2016).

29. Y.-J. Chiang, and T.-J. Yen, Appl. Phys. Lett. 102, 011129 (2013).

30. H.-T. Chen, Opt. Express 20, 7165 (2012).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387