2018-08-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 16 , 2018    10.3788/COL201816.081202

Experimental realization of a switchable filter based on a dynamically transformable array
Xin Chen1;2, Jinsong Gao2, and Bonan Kang1
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, [Jilin University], Changchun 1 3001 2, China
2 Key Laboratory of Optical System Advanced Manufacturing Technology, [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences], Changchun 130033, China

Chin. Opt. Lett., 2018, 16(08): pp.081202

Topic:Instrumentation, measurement and metrology
Keywords(OCIS Code): 120.2440  160.3918  260.5740  350.4010  120.7000  

We introduce a geometrically reconfigurable metasurface whose artificial “atoms” will reorient within unit cells in response to a thermal stimulus in the microwave spectrum. It can alternate between two contrasting behaviors under different temperatures and serve as a switchable filter that allows the incident energy to be selectively transmitted or reflected with an excess of 10 dB isolation at certain frequencies for both polarizations. The experimental results are consistent with the theoretical simulations, verifying the availability of an innovative method for manipulating electromagnetic waves with the merits of higher controllability for dynamic behavior and greater flexibility in the design process.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (726 KB)


Posted online:2018/7/30

Get Citation: Xin Chen, Jinsong Gao, and Bonan Kang, "Experimental realization of a switchable filter based on a dynamically transformable array," Chin. Opt. Lett. 16(08), 081202(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 61401424).


1. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).

2. N. Engheta, and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley-IEEE, 2006).

3. W. Cai, and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

4. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, Science 305, 788 (2004).

5. N. Yu, and F. Capasso, Nat. Mater. 13, 139 (2014).

6. K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, Sci. Rep. 4, 5935 (2014).

7. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, Adv. Mater. 26, 5031 (2014).

8. L. Zhang, S. Mei, K. Huang, and C. Qiu, Adv. Opt. Mater. 4, 818 (2016).

9. S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, Appl. Phys. Rev. 2, 011303 (2015).

10. S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, IEEE Antennas Wireless Propag. Lett. 10, 1499 (2012).

11. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, IEEE Trans. Antennas Propag. Mag. 54, 10 (2012).

12. B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, Sci. Rep. 4, 4971 (2014).

13. S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, Opt. Express 22, 13403 (2014).

14. H. X. Xu, G. M. Wang, T. Cai, J. Xiao, and Y. Q. Zhuang, Opt. Express 24, 27836 (2016).

15. Z. X. Su, Q. Zhao, K. Song, X. P. Zhao, and J. B. Yin, Sci. Rep. 7, 43026 (2017).

16. J. Chou, L. Parameswaran, B. Kimball, and M. Rothschild, Opt. Express 24, 24265 (2016).

17. K. P. Chen, S. C. Ye, C. Y. Yang, Z. H. Yang, W. Lee, and M. G. Sun, Opt. Express 24, 16815 (2016).

18. F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, Light Sci. Appl. 3, e171 (2014).

19. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, Phys. Rev. Lett. 103, 147401 (2009).

20. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, Nano Lett. 10, 4222 (2010).

21. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, Nano Lett. 11, 2142 (2011).

22. B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley and Sons, 2000)

23. J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, Mater. Des. 56, 1078 (2014).

24. G. F. Xu, N. C. Si, and Y. X. Li, Chin. J. Nonferrous Met. 14, 825 (2004).

25. Y. Bellouard, in Proceedings of the 7th European Symposium on Martensitic Transformations (2008), p. 582.

26. M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, Mater. Sci. Eng. A 497, 353 (2008).

27. G. F. Xu, Res. Stud. Foundry Equip. 23, 20 (2001).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387