2018-08-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 16 , 2018    10.3788/COL201816.081201

Noise reduction and signal to noise ratio improvement in magneto-optical polarization rotation measurement
Muhammad Basharat, Ming Ding, Yang Li, Hongwei Cai, and Jiancheng Fang
[School of Instrumentation Science &
Opto-Electronics Engineering, Beihang University], Beijing 100191, China

Chin. Opt. Lett., 2018, 16(08): pp.081201

Topic:Instrumentation, measurement and metrology
Keywords(OCIS Code): 120.5410  000.3110  040.1880  120.5475  

The measurement of an extremely small magneto-optical polarization rotation angle with high sensitivity is integral to many scientific and technological applications. In this Letter, we have presented a technique based on Faraday modulation combined with the optical differential method to measure an extremely small polarization rotation angle with high sensitivity. The theoretical and experimental results show that common mode noise is reduced appreciably and signal to noise ratio is enhanced. The effectiveness of this technique has been demonstrated by measuring the Verdet constant of terbium gallium garnet glass and measuring the small polarization rotation angle. A sensitivity of enhancement of one order of magnitude has been achieved using differential detection based on Faraday modulation.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (481 KB)


Posted online:2018/7/30

Get Citation: Muhammad Basharat, Ming Ding, Yang Li, Hongwei Cai, and Jiancheng Fang, "Noise reduction and signal to noise ratio improvement in magneto-optical polarization rotation measurement," Chin. Opt. Lett. 16(08), 081201(2018)

Note: This work was supported by the National Key R&D Program of China (No. 2017YFB0503100) and the National Science Foundation of China (NSFC) (No. 61227902).


1. J. Fang, R. Li, L. Duan, Y. Chen, and W. Quan, Rev. Sci. Instrum. 86, 073116 (2015).

2. S. J. P. Nakayama, N. H. Edwards, and P. E. G. Baird, J. Phys. B 29, 1861 (1996).

3. S. J. Seltzer, “Developments in alkali-metal atomic magnetometry ,” Ph.D thesis (Princeton University, 2008).

4. J. Stenger, M. Beckmann, W. Nagengast, and K. Rith, Nucl. Instrum. Methods Phys. Res. Sect. A 384, 333 (1997).

5. X. Zhang, G. Yang, K. Dai, and Y. Chen, Chin. Opt. Lett. 15, 070201 (2017).

6. G. Dong, J. Deng, J. Lin, S. Zhang, H. Lin, and Y. Wang, Chin. Opt. Lett. 15, 040201 (2017).

7. B. Zhou, G. Lei, L. Chen, W. Wu, Z. Wang, X. Meng, and J. Fang, Chin. Opt. Lett. 15, 082302 (2017).

8. D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, J. Opt. Soc. Am. B 29, 786 (2012).

9. P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, Opt. Lett. 36, 1425 (2011).

10. E. H. Hwang, and B. Y. Kim, Measure. Sci. Technol. 17, 2015 (2006).

11. C. Li, and T. Yoshino, Appl. Opt. 51, 5119 (2012).

12. A. M. Smith, Opt. Laser Technol. 12, 25 (1980).

13. C.-Y. Chang, L. Wang, J.-T. Shy, C.-E. Lin, and C. Chou, Rev. Sci. Instrum. 82, 063112 (2011).

14. D. He, B. Xie, and S. Feng, Rev. Sci. Instrum. 87, 043102 (2016).

15. J. Li, L. Luo, J. Carvell, R. Cheng, T. Lai, and Z. Wang, J. Appl. Phys. 115, 103101 (2014).

16. A. C. H. Rowe, I. Zhaksylykova, G. Dilasser, Y. Lassailly, and J. Peretti, Rev. Sci. Instrum. 88, 043903 (2017).

17. M. Sofronie, M. Elisa, B. A. Sava, L. Boroica, M. Valeanu, and V. Kuncser, Rev. Sci. Instrum. 86, 053905 (2015).

18. J. Xia, P. T. Beyersdorf, M. M. Fejer, and A. Kapitulnik, Appl. Phys. Lett. 89, 062508 (2006).

19. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Opt. Express 15, 11255 (2007).

20. C. Mi, S. Chen, X. Zhou, K. Tian, H. Luo, and S. Wen, Photon. Res. 5, 92 (2017).

21. S. M. Saltiel, P. Yankov, and N. I. Zheludev, Appl. Phys. B 42, 115 (1987).

22. J. Fang, S. Wan, J. Qin, C. Zhang, and W. Quan, J. Opt. Soc. Am. B 31, 512 (2014).

23. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, IEEE Trans. Microwave Theory Tech. 30, 1635 (1982).

24. M. Basharat, M. Ding, H. Cai, Y. Li, and J. Fang, MATEC Web Conf. 114, 04004 (2017).

25. N. P. Barnes, and L. B. Petway, J. Opt. Soc. Am. B 9, 1912 (1992).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387