2018-07-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 16 , 2018    10.3788/COL201816.073202

Effect of metal surface morphology on nano-structured patterns induced by a femtosecond laser pulse and its experimental verification
Haiying Song, Shengwang Tan, Elshaimaa M. Emara, Yanjie Zhang, Shibing Liu, Yao Li, and Haiyun Liu
Strong-Field and Ultrafast Photonics Lab, Institute of Laser Engineering, [Beijing University of Technology], Beijing 100124, China

Chin. Opt. Lett., 2018, 16(07): pp.073202

Topic:Ultrafast optics
Keywords(OCIS Code): 320.2250  240.5770  220.4241  350.3390  

The effect of material surface morphology on the periodic subwavelength of nano-structures induced by a femtosecond (fs) laser was investigated systematically from the initial surface roughness, the different scratches, the pre-formed ripples, and the “layer-carving” technology experiments. The results of the comparative experiments indicate that the initial surface conditions of the target surface have no obvious effects on the spatial structured periods (SSPs) and the ripple orientation of the periodic nano-structures induced by a fs laser, which agreed well with the foretold present surface two-plasmon resonance (STPR) model. Furthermore, different shapes of nano-grids with high regularity and uniformity were obtained by fs-laser fabrication.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (795 KB)


Posted online:2018/6/29

Get Citation: Haiying Song, Shengwang Tan, Elshaimaa M. Emara, Yanjie Zhang, Shibing Liu, Yao Li, and Haiyun Liu, "Effect of metal surface morphology on nano-structured patterns induced by a femtosecond laser pulse and its experimental verification," Chin. Opt. Lett. 16(07), 073202(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 51705009).


1. S. Juodkazis, V. Mizeikis, and H. Misawa, J. Appl. Phys. 106, 051101 (2009).

2. F. Chen, and J. R. Vázquez de Aldana, Laser Photon. Rev. 8, 251 (2014).

3. A. Pan, T. Chen, C. Li, and X. Hou, Chin. Opt. Lett. 14, 052201 (2016).

4. W. T. Chen, M. L. Tseng, C. Y. Liao, P. C. Wu, S. Sun, Y. W. Huang, C. M. Chang, C. H. Lu, L. Zhou, D. W. Huang, A. Q. Liu, and D. P. Tsai, Opt. Express 21, 618 (2013).

5. M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, ACS Nano 6, 5190 (2012).

6. A. Y. Vorobyev, and C. Guo, Laser Photon. Rev. 7, 385 (2013).

7. R. Buividas, M. Mikutis, and S. Juodkazis, Prog. Quantum Electron. 38, 119 (2014).

8. A. Y. Vorobyev, and C. Guo, J. Appl. Phys. 117, 033103 (2015).

9. M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, Nanotechnology 23, 444013 (2012).

10. J. Meng, H. Y. Song, X. Li, and S. B. Liu, Appl. Phys. A 118, 1197 (2015).

11. A. Y. Vorobyev, V. S. Makin, and C. Guo, Phys. Rev. Lett. 102, 234301 (2009).

12. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, ACS Nano 3, 4062 (2009).

13. Y. Huang, S. Liu, W. Li, Y. Liu, and W. Yang, Opt. Express 17, 20756 (2009).

14. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, Opt. Express 19, 9035 (2011).

15. J. Bonse, A. Rosenfeld, and J. Kruger, J. Appl. Phys. 106, 104910 (2009).

16. D. Kim, W. Jang, T. Kim, A. Moon, K. S. Lim, M. Lee, I. B. Sohn, and S. Jeong, J. Appl. Phys. 111, 093518 (2012).

17. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, Appl. Phys. Lett. 90, 153115 (2007).

18. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, Phys. Rev. B 27, 1141 (1983).

19. Y. Yang, J. Yang, L. Xue, and Y. Guo, Appl. Phys. Lett. 97, 141101 (2010).

20. T. Y. Hwang, and C. L. Guo, J. Appl. Phys. 109, 083521 (2011).

21. Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, Opt. Express 18, 27226 (2010).

22. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, Opt. Express 19, 19093 (2011).

23. H. Y. Song, Y. J. Zhang, X. M. Dong, and S. B. Liu, Chin. Opt. Lett. 14, 123202 (2016).

24. M. Hashida, Y. Ikuta, Y. Miyasaka, S. Tokita, and S. Sakabe, Appl. Phys. Lett. 102, 174106 (2013).

25. K. M. T. Ahmmed, C. Grambow, and A. Kietzig, Micromachines 5, 1219 (2014).

26. K. Zhou, X. Jia, H. Xi, J. Liu, D. Feng, S. Zhang, Z. R. Sun, and T. Q. Jia, Chin. Opt. Lett. 15, 022201 (2017).

27. A. Y. Vorobyev, V. S. Makin, and C. Guo, J. Appl. Phys. 101, 034903 (2007).

28. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, Opt. Express 20, 905 (2012).

29. B. K. Nayak, and M. C. Gupta, Opt. Lasers Eng. 48, 966 (2010).

30. X. M. Dong, H. Y. Song, and S. B. Liu, Chin. Opt. Lett. 13, 071001 (2015).

31. Q. Z. Zhao, S. Malzer, and L. J. Wang, Opt. Lett. 32, 1932 (2007).

32. T. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, Appl. Phys. Lett. 73, 1673 (1998).

33. H. Y. Song, S. B. Liu, H. Y. Liu, Y. Wang, T. Chen, and X. M. Dong, Opt. Express 24, 12151 (2016).

34. S. R. J. Brueck, and D. J. Ehrlich, Phy. Rev. Lett. 48, 1678 (1982).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387