2018-07-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 16 , 2018    10.3788/COL201816.073201

Polarization-dependent femtosecond laser filamentation in air
Zhongbin Zhu1;2, Tie-Jun Wang2, Yaoxiang Liu2, Na Chen2, Huifang Zhang1, Haiyi Sun2, Hao Guo2, Jianhao Zhang2, Xuan Zhang2, Gengyu Li2, Candong Liu2, Zhinan Zeng2, Jiansheng Liu2, See Leang Chin3, Ruxin Li2, and Zhizhan Xu2
1 Department of Physics, [Shanghai University], Shanghai 200444, China
2 State Key Laboratory of High Field Laser Physics, [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences], Shanghai 201800, China
3 Centre d’Optique, Photonique et Laser (COPL) and Département de physique, de génie physique et d’optique, [Université Laval], Québec, Québec G1V 0A6, Canada

Chin. Opt. Lett., 2018, 16(07): pp.073201

Topic:Ultrafast optics
Keywords(OCIS Code): 320.2250  260.5430  300.2530  

We report on a systematic study of the laser polarization effect on a femtosecond laser filamentation in air. By changing the laser’s ellipticity from linear polarization to circular polarization, the onset position of laser filament formation becomes farther from the focusing optics, the filament length is shorter, and less laser energy is deposited. The laser polarization effect on air filaments is supported by a simulation and analysis of the polarization-dependent critical power and ionization rates in air.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (576 KB)


Posted online:2018/6/27

Get Citation: Zhongbin Zhu, Tie-Jun Wang, Yaoxiang Liu, Na Chen, Huifang Zhang, Haiyi Sun, Hao Guo, Jianhao Zhang, Xuan Zhang, Gengyu Li, Candong Liu, Zhinan Zeng, Jiansheng Liu, See Leang Chin, Ruxin Li, and Zhizhan Xu, "Polarization-dependent femtosecond laser filamentation in air," Chin. Opt. Lett. 16(07), 073201(2018)

Note: This work was supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB16000000), the Key Project from the Bureau of International Cooperation of the Chinese Academy of Sciences (No. 181231KYSB20160045), and the 100 Talents Program of the Chinese Academy of Sciences. SLC acknowledges the support from Laval University in Canada.


1. S. L. Chin, Femtosecond Laser Filamentation (Springer, 2009).

2. A. Couairon, and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

3. J. Kasparian, and J.-P. Wolf, Opt. Express 16, 466 (2008).

4. S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, J. Nonlinear Opt. Phys. Mater. 8, 121 (1999).

5. S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Saideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, Laser Phys. 22, 1 (2012).

6. S. Tzortzakis, G. Méchain, G. Patalano, Y. B. André, B. Prade, M. Franco, A. Mysyrowicz, J. M. Munier, M. Gheudin, G. Beaudin, and P. Encrenaz, Opt. Lett. 27, 1944 (2002).

7. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Ak?zbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, Can. J. Phys. 83, 863 (2005).

8. T-J. Wang, Y. X. Wei, Y. X. Liu, N. Chen, Y. H. Liu, J. J. Ju, H. Y. Sun, C. Wang, H. Lu, J. S. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, Sci. Rep. 5, 18681 (2015).

9. J. P. Wolf, Rep. Prog. Phys. 81, 026001 (2018).

10. Q. Luo, W. Liu, and S. L. Chin, Appl. Phys. B 76, 337 (2003).

11. J. P. Yao, B. Zeng, H. L. Xu, G. H. Li, W. Chu, J. L. Ni, H. S. Zhang, S. L. Chin, Y. Cheng, and Z. Z. Xu, Phys. Rev. A 84, 051802 (2011).

12. S. Rostami, J.-C. Diels, and L. Arissian, Opt. Express 23, 3299 (2015).

13. E. W. Rosenthal, N. Jhajj, I. Larkin, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, Opt. Lett. 41, 3908 (2016).

14. S. Tzortzakis, B. Lamouroux, A. Chiron, S. D. Moustaizis, D. Anglos, M. Franco, B. Prade, and A. Mysyrowicz, Opt. Commun. 197, 131 (2001).

15. A. Dubietis, G. Tamo?auskas, G. Fibich, and B. Ilan, Opt. Lett. 29, 1126 (2004).

16. G. Fibich, and B. Ilan, Opt. Lett. 29, 887 (2004).

17. N. A. Panov, O. G. Kosareva, A. B. Savel’ev, D. S. Uryupina, I. A. Perezhogin, and V. A. Makarov, Quantum Electron. 41, 160 (2011).

18. S. Petit, A. Talebpour, A. Proulx, and S. L. Chin, Opt. Commun. 175, 323 (2000).

19. I. S. Golubtsov, V. P. Kandidov, and O. G. Kosareva, Quantum Electron. 33, 525 (2003).

20. S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, Sci. Rep. 6, 20363 (2016).

21. M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. E 64, 046607 (2001).

22. G. Fibich, and B. Ilan, Phys. Rev. Lett. 89, 013901 (2002).

23. J. Liu, X. W. Chen, R. X. Li, and T. Kobayashi, Laser Phys. Lett. 5, 45 (2007).

24. C. Liu, H. W. Zang, H. L. Li, Y. H. Yu, and H. L. Xu, Chin. Opt. Lett. 15, 120201 (2017).

25. H. L. Xu, and S. L. Chin, Sensors 11, 32 (2011).

26. Y. X. Liu, T.-J. Wang, N. Chen, S. Z. Du, J. J. Ju, H. Y. Sun, C. Wang, J. S. Liu, H. Lu, S. L. Chin, R. X. Li, Z. Z. Xu, and Z. S. Wang, Opt. Express 25, 11078 (2017).

27. G. Fibich, and B. Ilan, J. Opt. Soc. Am. B 17, 1749 (2000).

28. V. P. Kandidov, and V. Y. Fedorov, Quantum Electron. 34, 1163 (2004).

29. A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, Laser Phys. 11, 68 (2001).

30. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, Phys. Rev. Lett. 114, 063003 (2015).

31. X. M. Tong, Z. X. Zhao, and C. D. Lin, Phys. Rev. A 66, 033402 (2002).

32. C. L. Wang, X. Y. Lai, Z. L. Hu, Y. J. Chen, W. Quan, H. P. Kang, C. Gong, and X. J. Liu, Phys. Rev. A 90, 013422 (2014).

33. M. V. Amomosov, N. B. Delone, and V. P. Krainov, Zh. Eksp. Teor. Fiz. 91, 2008 (1986).

34. J. J. Sakurai, and J. Napolitano, Modern Quantum Mechanics , 2nd ed. (Pearson, 2010), p.?201.

35. R. Kopold, W. Becker, M. Kleber, and G. G. Paulus, J. Phys. B 35, 217 (2002).

36. J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).

37. V. I. Talanov, JETP Lett. 11, 199 (1970).

38. J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000).

39. F. Théberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, Phys. Rev. E 74, 036406 (2006).

40. W. W. Liu, Chin. J. Phys. 52, 465 (2014).

41. S. Q. Xu, X. D. Sun, B. Zeng, W. Chu, J. Y. Zhao, W. W. Liu, Y. Cheng, Z. Z. Xu, and S. L. Chin, Opt. Express 20, 299 (2012).

42. G. Point, E. Thouin, A. Mysyrowicz, and A. Houard, Opt. Express 24, 6271 (2016).

43. H. Yang, J. Zhang, Q. J. Zhang, Z. Q. Hao, Y. T. Li, Z. Y. Zheng, Z. H. Wang, Q. L. Dong, X. Lu, Z. Y. Wei, and Z. M. Sheng, Opt. Lett. 30, 534 (2005).

44. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).

45. N. A. Panov, V. A. Makarov, V. Y. Fedorov, and O. G. Kosareva, Opt. Lett. 38, 537 (2012).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387