2018-07-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 16 , 2018    10.3788/COL201816.072201

Optical design and evaluation of Alvarez-type vision-training system
Wei Lou1, Dewen Cheng1, Luo Gu1, Weihong Hou2, and Yongtian Wang1
1 School of Optics and Photonics, [Beijing Institute of Technology], Beijing 100081, China
2 [Beijing NED+ Ltd.], Beijing 100081, China

Chin. Opt. Lett., 2018, 16(07): pp.072201

Topic:Optical design and fabrication
Keywords(OCIS Code): 220.3620  220.1250  330.7333  330.7327  

Myopia has become a noteworthy issue due to the increasing use of our eyes. We propose a continuous power variation vision-training device based on Alvarez lenses with the power ranging from ?10 D to +2 D. First, we introduce the principle of Alvarez lenses and the evaluation method of dioptric power and astigmatism. Then, we optimize the optical system described by Zernike polynomials. Finally, we analyze the distributions of dioptric power and astigmatism with the overall surface analysis and fields of view (FOVs) analysis. The results show that the optical performance of an optimized system can meet the requirement within a 40° FOV.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1132 KB)


Posted online:2018/6/25

Get Citation: Wei Lou, Dewen Cheng, Luo Gu, Weihong Hou, and Yongtian Wang, "Optical design and evaluation of Alvarez-type vision-training system," Chin. Opt. Lett. 16(07), 072201(2018)

Note: This work was supported by the National Key Research and Development Program of China (No. 2016YFB1001502) and the National Natural Science Foundation of China (No. 61727808). We thank Synopsys for providing the educational license of CODE V.


1. J. S. Rahi, P. M. Cumberland, and C. S. Peckham, Ophthalmology 118, 797 (2011).

2. L. Li, Report on National Vision Care in China (Peking University, 2016).

3. J. Wallman, and J. Winawer, Neuron 43, 447 (2004).

4. J. R. Cooling, Dictionary of Visual Science (Butterworth-Heinemann, 1997).

5. J. H. Shao, Chin. Med. Eng. 24, 113 (2016).

6. D. P. Hu, and J. C. Sun, Chin. J. Rehabil. 26, 149 (2011).

7. J. Xu, Chin. Glass Sci. Technol. 05, 127 (2013).

8. Q. L. Deng, B. S. Lin, H. T. Chang, G. S. Huang, and C. Y. Chen, J. Disp. Technol. 10, 433 (2014).

9. D. Todd, and B. Sabel, “Method and device for delivering visual stimuli with head mounted display during vision training,” U.S. Patent 0,038,142 A1 (February?15, 2007).

10. Strachan Eyecare Plus, “Vision therapy,” http://www.str-achaneyecare.com.au (2013).

11. L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. Patent 3,305,294 (February?21, 1967).

12. D. Cheng, Q. Wang, Y. Wang, and G. Jin, Chin. Opt. Lett. 11, 031201 (2013).

13. T. Yang, J. Zhu, and G. Jin, Chin. Opt. Lett. 14, 060801 (2016).

14. T. Yang, G. Jin, and J. Zhu, Chin. Opt. Lett. 10, 060202 (2017).

15. M. Kong, Z. Gao, X. Li, S. Ding, X. Qu, and M. Yu, Opt. Express 17, 13283 (2009).

16. D. Cheng, H. Hua, M. M. Talha, and Y. Wang, Appl. Opt. 48, 2655 (2009).

17. S. Barbero, Opt. Express 17, 9376 (2009).

18. S. Barbero, and J. Rubinstein, J. Opt. 13, 125705 (2011).

19. M. Peloux, and L. Berthelot, Appl. Opt. 53, 6670 (2014).

20. T. J. Suleski, and M. A. Davies, Opt. Eng. 51, 3006 (2012).

21. R. Blendowske, E. A. Villegas, and P. Artal, Optom. Vis. Sci. 83, 666 (2006).

22. J. Oprea, Differential Geometry and Its Applications (Elsevier Science, 1991).

23. Synopsys, CODE V Reference Manual (2017).

24. R. J. Noll, J. Opt. Soc. Am. 66, 207 (1976).

25. H. Gross, Handbook of Optical Systems (Wiley-VCH, 2005).

26. M. M. Kong, and Z. Li, Chin. Opt. Lett. 12, 113301 (2014).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387