2018-07-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 16 , 2018    10.3788/COL201816.070901


Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes
Chenchen Zhao, Ji Chen, Hanmeng Li, Tao Li, and Shining Zhu
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, [Nanjing University], Nanjing 210093, China

Chin. Opt. Lett., 2018, 16(07): pp.070901

DOI:10.3788/COL201816.070901
Topic:Holography
Keywords(OCIS Code): 090.4220  050.1970  130.2790  

Abstract
We design and demonstrate a type of multiplexed hologram by nanoscatterers inside a dielectric-loaded plasmonic waveguide with guided-wave illuminations. The mode division multiplexed hologram (MDMH) is fulfilled by the scattering of guided waves to free space with respect to different modes. According to different mode numbers, these guided modes have different responses to the multiplexed hologram, and then give rise to different holographic images in reconstructions. In experiments, we show two kinds of MDMHs based on TM0/TE0 and TE0/TE1 modes as examples. Our approach could enrich the holography method that favors on-chip integration.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (863 KB)

Share:


Received:2018/5/2
Accepted:2018/5/23
Posted online:2018/6/29

Get Citation: Chenchen Zhao, Ji Chen, Hanmeng Li, Tao Li, and Shining Zhu, "Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes," Chin. Opt. Lett. 16(07), 070901(2018)

Note: This work was supported by the National Key R&D Program of China (Nos. 2017YFA0303700 and 2016YFA0202103), and the National Natural Science Foundation of China (Nos. 11674167 and 11621091). T. Li is thankful for the support of PAPD from Jiangsu Province and the Dengfeng Project B of Nanjing University.



References

1. D. Gabor, Nature 161, 777 (1948).

2. B. R. Brown, and A. W. Lohmann, Appl. Opt. 5, 967 (1966).

3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).

4. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, Nano Lett. 12, 5750 (2012).

5. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Nat. Mater. 11, 426 (2012).

6. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 339, 1232009 (2013).

7. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, Science 339, 1405 (2013).

8. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, Light Sci. Appl. 3, e167 (2014).

9. Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, Proc. Natl. Acad. Sci. 111, 12679 (2014).

10. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, Nat. Nanotechnol. 10, 937 (2015).

11. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, Nat. Commun. 3, 1198 (2012).

12. W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, Nat. Commun. 7, 11930 (2016).

13. W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, Nano Lett. 14, 225 (2014).

14. J. Du, and J. Wang, Opt. Express 26, 13183 (2018).

15. Y. Zhao, J. Du, J. Zhang, L. Shen, and J. Wang, Appl. Phys. Lett. 112, 171103 (2018).

16. J. Wang, Chin. Opt. Lett. 16, 050006 (2018).

17. X. Ni, A. V. Kildishev, and V. M. Shalaev, Nat. Commun. 4, 2807 (2013).

18. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, Nat. Commun. 4, 2808 (2013).

19. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, Nat. Nanotechnol. 10, 308 (2015).

20. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, Nat. Commun. 6, 8241 (2015).

21. S. C. Malek, H.-S. Ee, and R. Agarwal, Nano Lett. 17, 3641 (2017).

22. J. Wang, J. Zhang, X. Wu, H. Luo, and Q. Gong, Appl. Phys. Lett. 94, 081116 (2009).

23. M. U. González, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, Phys. Rev. B 73, 155416 (2006).

24. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).

25. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nat. Photon. 3, 395 (2009).

26. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Phys. Rev. Lett. 107, 126804 (2011).

27. L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, Nano Lett. 11, 4357 (2011).

28. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, Phys. Rev. Lett. 109, 193901 (2012).

29. L. Li, T. Li, S. M. Wang, and S. N. Zhu, Phys. Rev. Lett. 110, 046807 (2013).

30. J. Chen, L. Li, T. Li, and S. N. Zhu, Sci. Rep. 6, 28926 (2016).

31. L. Li, T. Li, X.-M. Tang, S.-M. Wang, Q.-J. Wang, and S.-N. Zhu, Light Sci. Appl. 4, e330 (2015).

32. M. Ozaki, J.-i. Kato, and S. Kawata, Science 332, 218 (2011).

33. I. Dolev, I. Epstein, and A. Arie, Phys. Rev. Lett. 109, 203903 (2012).

34. J. Chen, T. Li, S. Wang, and S. Zhu, Nano Lett. 17, 5051 (2017).

35. Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, Opt. Lett. 39, 3900 (2014).

36. Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, Appl. Phys. Lett. 101, 171116 (2012).

37. L. Li, T. Li, S. M. Wang, and S. N. Zhu, Opt. Lett. 37, 5091 (2012).

38. X. M. Tang, L. Li, T. Li, Q. J. Wang, X. J. Zhang, S. N. Zhu, and Y. Y. Zhu, Opt. Lett. 38, 1733 (2013).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387