2018-07-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 16 , 2018    10.3788/COL201816.070603

Low-noise and highly stable optical fiber temperature sensor using modified pulse-reference-based compensation technique
Qiang Bian1;2, Zhangqi Song1, Dongyu Song3, Xueliang Zhang1, Bingsheng Li3, Zhou Meng1, and Yang Yu1
1 College of Meteorology and Oceanology, [National University of Defense Technology], Changsha 41 0073, China
2 College of Advanced Interdisciplinary Studies, [National University of Defense Technology], Changsha 410073, China
3 Department of Physics, School of Science, [Harbin Institute of Technology], Harbin 150080, China

Chin. Opt. Lett., 2018, 16(07): pp.070603

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2370  060.4080  280.6780  

We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be 0.0005 dB, which makes it possible for the detection of the minor reflectivity change of the film at different temperatures. The temperature sensitivity is 0.0034 dB/°C, so the resolution can achieve 0.2°C. The maximum difference of the temperature output values of the sensor at 20°C at different points in time is 0.39°C. The low cost, ultra-small size, high stability, and good repeatability of the sensor make it a promising temperature sensing device for practical application.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (587 KB)


Posted online:2018/6/22

Get Citation: Qiang Bian, Zhangqi Song, Dongyu Song, Xueliang Zhang, Bingsheng Li, Zhou Meng, and Yang Yu, "Low-noise and highly stable optical fiber temperature sensor using modified pulse-reference-based compensation technique," Chin. Opt. Lett. 16(07), 070603(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11574397, 61775238, 61705262, and 61705263) and the Scientific Research Project of National University of Defense Technology (No. JC15-11-02).


1. J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, D. P. Hand, and R. R. J. Maier, J. Lightwave Technol. 33, 2419 (2015).

2. X. Dong, Z. Xie, Y. Song, K. Yin, D. Chu, and J. Duan, Chin. Opt. Lett. 15, 090602 (2017).

3. S. Ju, P. R. Watekar, and W. Han, in 2009 Conference on Optical Fiber Communication - Includes Post Deadline Papers (2009), p.?1.

4. A. K. Mallik, A. Kumar, G. Gupta, and A. Bhatnagar, in 2012 International Conference on Fiber Optics and Photonics (PHOTONICS) (2012), p.?1.

5. Z. Wei, Z. Song, X. Zhang, Y. Yu, and Z. Meng, Chin. Opt. Lett. 11, 110602 (2013).

6. Y. Wang, F. Cheng, and L. Liang, in Optoelectronic Devices and Integration (2015), paper?JW3A.71.

7. C. Park, K. Joo, S. Kang, and H. Kim, J. Opt. Soc. Korea 15, 329 (2011).

8. P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, Opt. Lett. 38, 4617 (2013).

9. Y. Yu, L. Jiang, B. Li, S. Wang, and H. Wu, Chin. Opt. Lett. 10, 122801 (2012).

10. X. Gao, M. Yang, J. Peng, and D. Lv, Optik–Int. J. Light Electron Opt. 130, 1014 (2017).

11. J. Wang, E. M. Lally, B. Dong, J. Gong, and A. Wang, IEEE Sens. J. 11, 3406 (2011).

12. B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, IEEE Photon. Technol. Lett. 26, 900 (2014).

13. W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, in LEOS ‘09 IEEE Leos Meeting Conference Proceedings (2009), p.?761.

14. M. Ding, P. Wang, and G. Brambilla, in Imaging and Applied Optics Technical Papers (2012), paper?STu1F.2.

15. S. W. Kim, and K. Park, J. Korean Phys. Soc. 44, L785 (2004).

16. Z. Liu, X. Qiao, and R. Wang, Appl. Opt. 56, 256 (2017).

17. M. Li, and Y. Li, Appl. Opt. 50, 231 (2011).

18. G. Li, Z. Du, B. Wang, and C. Jiang, Chin. Opt. Lett. 390, 220 (2004).

19. C. Sui, J. Xia, H. Wang, T. Xu, B. Yan, and Y. Liu, Rev. Sci. Instrum. 82, 084901 (2011).

20. Q. Bian, Z. Song, Y. Chen, and X. Zhang, Chin. Opt. Lett. 15, 120603 (2017).

21. H. H. Li, J. Phys. Chem. Ref. Data 13, 103 (1984).

22. L. Ward, “Zinc selenide (ZnSe) zinc telluride (ZnTe),” in Handbook of Optical Constants of Solids (Academic, 1997), p.?737.

23. D. T. F. Marple, J. Appl. Phys. 35, 539 (1964).

24. R. Amutha, A. Subbarayan, R. Sathyamoorthy, K. Natarajan, and S. Velumani, J. New Mat. Electron. Sys. 10, 27 (2007).

25. G. I. Rusu, P. Prepelita, N. Apetroaei, and G. Popa, Appl. Surf. Sci. 218, 223 (2003).

26. L. Wang, F. Sun, and Q. Yu, in 2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (2008), p.?28.

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387