2018-07-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 16 , 2018    10.3788/COL201816.070601

Impact of the self-steepening effect on soliton spectral tunneling in PCF with three zero dispersion wavelengths
Hua Yang1;2, Gangyan Xiao1, Saili Zhao1, Zhixiang Tang1, Tao Li1, Yupei Luo1, and Xue Tian1
1 College of Information Science and Engineering, Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, [Hunan University], Changsha 41 0082, China
2 Synergetic Innovation Center for Quantum Effects and Application, [Hunan Normal University], Changsha 410081, China

Chin. Opt. Lett., 2018, 16(07): pp.070601

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.5295  190.4370  

This work presents a numerical investigation of the self-steepening (SS) effect on the soliton spectral tunneling (SST) effect in a photonic crystal fiber (PCF) with three zero dispersion wavelengths. Interestingly, the spectral range and flatness can be flexibly tuned by adjusting the SS value. When the SS coefficient increases, the energy between solitons and dispersion waves is redistributed, and the red-shifted soliton forms earlier in the region of long wavelength anomalous dispersion. As a consequence, the SST becomes more obvious. The findings of this work provide interesting insights in regard to the impact of the SST effect on tailored supercontinuum generation.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (617 KB)


Posted online:2018/6/29

Get Citation: Hua Yang, Gangyan Xiao, Saili Zhao, Zhixiang Tang, Tao Li, Yupei Luo, and Xue Tian, "Impact of the self-steepening effect on soliton spectral tunneling in PCF with three zero dispersion wavelengths," Chin. Opt. Lett. 16(07), 070601(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 61275137 and 61571186) and the Natural Science Foundation of Hunan Province of China (No. 2018JJ2061).


1. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).

2. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, Opt. Express 16, 1300 (2008).

3. G. P. Agrawal, Nonlinear Fiber Optics , 4th ed. (Academic, 2007).

4. S. Zhao, H. Yang, C. Zhao, and Y. Xiao, Opt. Express 25, 7192 (2017).

5. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, Opt. Fiber. Technol. 16, 378 (2010).

6. A. Mahalingam, and M. S. Mani Rajan, Opt. Fiber. Technol. 25, 44 (2015).

7. B. Kibler, P. A. Lacourt, F. Courvoisier, and J. M. Dudley, Electron. Lett. 43, 967 (2007).

8. H. Guo, S. Wang, X. Zeng, and M. Bache, IEEE Photon. Tech. Lett. 25, 1928 (2013).

9. F. Poletti, P. Horak, and D. J. Richardson, IEEE Photon. Technol. Lett. 20, 1414 (2008).

10. V. N. Serkin, and T. L. Belyaeva, J. Express Theor. Phys. Lett. 74, 573 (2001).

11. A. C. Newell, and J. Math, J. Math. Phys. 19, 1126 (1978).

12. J. F. Wang, L. Li, and S. T. Jia, J. Opt. Soc. 25, 1254 (2008).

13. B. Kibler, P. A. Lacourt, F. Courvoisier, and J. M. Dudley, Electron. Lett. 43, 967 (2007).

14. V. N. Serkin, V. A. Vysloukh, and J. R. Taylor, Electron. Lett. 29, 12 (1993).

15. H. Yang, B. Wang, N. Chen, X. Tong, and S. Zhao, Opt. Commun. 359, 20 (2016).

16. D. V. Skryabin, and A. V. Gorbach, Rev. Mod. Phys. 82, 1287 (2010).

17. C. Dai, H. Zhu, and C. Zheng, Z. Naturforsch. 67, 338 (2012).

18. Z. Hao, C. Zhao, J. Wen, S. Wen, and D. Fan, Acta. Opt. Sin. 31, 1006003 (2011).

19. S. Zhao, H. Yang, N. Chen, and C. Zhao, Sci. Rep. 7, 39926 (2017).

20. W. Wang, H. Yang, P. Tang, C. Zhao, and J. Gao, Opt. Express 21, 11215 (2013).

21. S. Vyas, T. Tanabe, M. Tiwari, and G. Singh, Chin. Opt. Lett. 14, 123201 (2016).

22. P. Maji, and R. Das, Chin. Opt. Lett. 15, 070606 (2017).

23. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, Photon. Res. 6, 535 (2018).

24. C. R. Petersen, U. M?ller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photon. 8, 830 (2014).

25. S. Zhao, H. Yang, N. Chen, and C. Zhao, IEEE Photon. J. 7, 7102701 (2015).

26. H. Qin, and X Xiao, Chin. Opt. Lett. 15, 030604 (2017).

27. M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, Photon. Res. 5, 710 (2017).

28. E. N. Tsoy, and M. De Sterke, Phys. Rev. 76, 043804 (2007).

29. B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, Opt. Express 18, 24729 (2010).

30. H. Yang, Q. Zeng, H. Hu, B. Wang, and W. Wang, Opt. Commun. 325, 170 (2014).

31. L. He, B. Yang, X. Zhang, and L. Yu, Chin. Opt. Lett. 4, 715 (2006).

32. H. Chen, Z. Chen, X. Zhou, and J. Hou, Chin. Opt. Lett. 10, 120603 (2012).

33. S. Wang, H. Guo, D. Fan, X. Bai, and X. Zeng, IEEE Photon. 5, 6100608 (2013).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387