2018-06-23 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 16 , 2018    10.3788/COL201816.061403


Sub-picosecond chirped laser pulse-induced airflow and water condensation in a cloud chamber
Haiyi Sun1, Yonghong Liu1;2, Jiansheng Liu1;3, Jingjing Ju1, Cheng Wang1, Xingkai Hu1, Zhongbin Zhu1, Yaoxiang Liu1, Tiejun Wang1, See Leang Chin4, Ruxin Li1, and Zhizhan Xu1
1 State Key Laboratory of High Field Laser Physics, [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences], Shanghai 201 800, China
2 MOE Key Laboratory of Advanced Micro-structured Materials, Institute of Precision Optical Engineering, School of Physics Science and Engineering, [Tongji University], Shanghai 2 00092 , China
3 IFSA Collaborative Innovation Center, [Shanghai Jiao Tong University], Shanghai 200240, China
4 Center for Optics, Photonics and Laser (COPL), [Laval University], Quebec City, Quebec G1V 0A6, Canada

Chin. Opt. Lett., 2018, 16(06): pp.061403

DOI:10.3788/COL201816.061403
Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3450  320.7110  010.3920  260.5210  

Abstract
Sub-picosecond chirped laser pulse-induced airflow and water condensation were investigated in a cloud chamber. The results indicate that the positively chirped sub-picosecond laser pulses generate a more uniform intensity distribution inside the plasma column, leading to a weaker airflow and an elliptic-shaped snow pile. The negatively chirped sub-picosecond laser pulses generate a spark-like intensity distribution inside the plasma column, which produces a wider range of airflow and a round snow pile. The amount of snow weight and the concentration of NO3? are found to be dependent on the intensity distribution inside the plasma column. The visibly stronger plasma column generates much more snow and a higher concentration of NO3?. These experimental results provide a reference for sub-picosecond laser-induced water condensation in realistic atmospheric conditions.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (530 KB)

Share:


Received:2017/12/20
Accepted:2018/4/19
Posted online:2018/5/28

Get Citation: Haiyi Sun, Yonghong Liu, Jiansheng Liu, Jingjing Ju, Cheng Wang, Xingkai Hu, Zhongbin Zhu, Yaoxiang Liu, Tiejun Wang, See Leang Chin, Ruxin Li, and Zhizhan Xu, "Sub-picosecond chirped laser pulse-induced airflow and water condensation in a cloud chamber," Chin. Opt. Lett. 16(06), 061403(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11425418, 61475167, 11404354, and 61221064) and the State Key Laboratory Program of the Chinese Ministry of Science and Technology.



References

1. V. J. Schaefer, Science 104, 457 (1946).

2. I. Langmuir, Science 106, 505 (1947).

3. V. J. Schaefer, Science 112, 447 (1950).

4. P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Quei?er, R. Salamé, E. Salmon, L. W?ste, and J.-P. Wolf, Nat. Photon. 4, 451 (2010).

5. S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. W?ste, and J.-P. Wolf, Nat. Commun. 2, 456 (2011).

6. T. Leisner, D. Duft, O. M?hler, H. Saathoff, M. Schnaiter, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüde, Y. Petit, P. Rohwetter, J. Kasparian, J.-P. Wolf, and L. W?ste, PNAS 110, 10106 (2013).

7. J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, Opt. Lett. 37, 1214 (2012).

8. H. Sun, J. Liu, C. Wang, J. Ju, Z. Wang, W. Wang, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, Opt. Express 21, 9255 (2013).

9. Y. Petit, S. Henin, J. Kasparian, and J.-P. Wolf, Appl. Phys. Lett. 97, 021108 (2010).

10. P. Rohwetter, J. Kasparian, L. W?ste, and J.-P. Wolf, J. Chem. Phys. 135, 134703 (2011).

11. H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. M?hler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J.-P. Wolf, and L. W?ste, Atmos. Chem. Phys. 13, 4593 (2013).

12. D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prév?t, U. Baltensperger, J. Kasparian, and J.-P. Wolf, Sci. Rep. 5, 14978 (2015).

13. H. Sun, H. Liang, Y. Liu, J. Ju, Y. Wei, C. Wang, T. Wang, J. Liu, S. L. Chin, R. Li, and Z. Xu, Appl. Phys. B 121, 155 (2015).

14. J. Ju, H. Sun, A. Sridharan, T. Wang, C. Wang, J. Liu, R. Li, Z. Xu, and S. L. Chin, Phys. Rev. E 88, 062803 (2013).

15. J. Ju, T. Leisner, H. Sun, A. Sridharan, T. Wang, J. Wang, C. Wang, J. Liu, R. Li, Z. Xu, and S. L. Chin, Appl. Phys. B 117, 1001 (2014).

16. I. S. Golubtsov, V. P. Kandidov, and O. G. Kosareva, Quantum Electron. 33, 525 (2003).

17. G. Méchain, C. D’Amico, Y.-B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, Opt. Commun. 247, 171 (2005).

18. F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, Appl. Phys. Lett. 83, 213 (2003).

19. R. Salamé, N. Lascoux, E. Salmon, J. Kasparian, and J. P. Wolf, Appl. Phys. Lett. 91, 171106 (2007).

20. G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J.-P. Wolf, S. Skupin, A. Vin?otte, R. Nuter, S. Champeaux, and L. Bergé, Phys. Rev. E 72, 026611 (2005).

21. S. Henin, Y. Petit, J. Kasparian, J.-P. Wolf, A. Jochmann, S. D. Kraft, S. Bock, U. Schramm, R. Sauerbrey, W. M. Nakaema, K. Stelmaszczyk, P. Rohwetter, L. W?ste, C.-L. Soulez, S. Mauger, L. Bergé, and S. Skupin, Appl. Phys. B 100, 77 (2010).

22. H. Sun, Y. Liu, J. Ju, Y. Tian, Y. Bai, Y. Liu, S. Du, C. Wang, T. Wang, J. Liu, S. L. Chin, R. Li, and Z. Xu, Opt. Express 24, 20494 (2016).

23. F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, Opt. Lett. 28, 206 (2003).

24. A. Schmitt-Sody, H. G. Kurz, L. Bergé, S. Skupin, and P. Polynkin, New J. Phy. 18, 093005 (2016).

25. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, Quantum Electron. 39, 205 (2009).

26. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).

27. W. Liu, and S. L. Chin, Opt. Express 13, 5750 (2005).

28. P. Sprangle, E. Esarey, and B. Hafizi, Phys. Rev. Lett. 79, 1046 (1997).

29. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Ak?zbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, Can. J. Phys. 83, 863 (2005).

30. S. A. Planas, N. L. Pires Mansur, C. H. Brito Cruz, and H. L. Fragnito, Opt. Lett. 18, 699 (1993).

31. Y. Liu, H. Sun, J. Ju, Y. Tian, Y. Bai, C. Wang, T. Wang, J. Liu, S. L. Chin, and R. Li, Chin. Opt. Lett. 14, 031401 (2016).

32. R. L. Armstrong, and E. Brun, Snow and Climate: Physical Processes, Surface Energy Exchange and Modelling (Cambridge University, 2008).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387