2018-06-23 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 16 , 2018    10.3788/COL201816.060603


4×20 GHz silica-based AWG hybrid integrated receiver optical sub-assemblies
Chaoyi Li1;2, Junming An1;2, Jiashun Zhang1, Liangliang Wang1, Jianguang Li1, Yue Wang1, Xiaojie Yin1, Hongjie Wang1, and Yuanda Wu1;2
1 State Key Laboratory of Integrated Optoelectronics, [Institute of Semiconductors, Chinese Academy of Sciences], Beijing 1 00083, China
2 College of Materials Science and Opto-Electronic Technology, [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2018, 16(06): pp.060603

DOI:10.3788/COL201816.060603
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.4230  230.7370  250.0250  

Abstract
Both the 4×20 GHz coarse wavelength division multiplexing and LAN-WDM receiver optical sub-assemblies (ROSAs) were developed. The ROSA package was hybrid integrated with a planar lightwave circuit arrayed waveguide grating (AWG) with 2% refractive index difference and a four-channel top-illuminated positive-intrinsic-negative photodetector (PD) array. The output waveguides of the AWG were designed in a multimode structure to provide flat-top optical spectra, and their end facet was angle-polished to form a total internal reflection interface to realize vertical coupling with a PD array. The maximum responsivity of ROSA was about 0.4 A/W, and its 3 dB bandwidth of frequency response was up to 20 GHz for each transmission lane. The hybrid integrated ROSA would be a cost-effective and easy-assembling solution for 100 GbE data center interconnections.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1039 KB)

Share:


Received:2018/3/26
Accepted:2018/4/16
Posted online:2018/5/28

Get Citation: Chaoyi Li, Junming An, Jiashun Zhang, Liangliang Wang, Jianguang Li, Yue Wang, Xiaojie Yin, Hongjie Wang, and Yuanda Wu, "4×20 GHz silica-based AWG hybrid integrated receiver optical sub-assemblies," Chin. Opt. Lett. 16(06), 060603(2018)

Note: This work was supported by the National High Technology Research and Development Program of China (No. 2015AA016902), the National Natural Science Foundation of China (Nos. 61435013 and 61405188), and K. C.Wong Education Foundation.



References

1. P. Bernasconi, L. Buhl, D. T. Neilson, J. H. Sinsky, and N. Basavanhally, IEEE Photon. Technol. Lett. 24, 1657 (2012).

2. Higher Speed Study Group, “IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet task force,” 2010, http://www.ieee802.org/3/ba/.

3. D. Lewis, and C. Cole, “CWDM4 MSA technical specifications rev 1.1,” 2015, http://www.cwdm4-msa.org/wp-content/uploads/2015/12/CWDM4-MSA-Technical-Spec-1p1-1.pdf.

4. S. K. Kang, J. K. Lee, J. C. Lee, and K. Kim, in Proceedings of 2010 Electronic Components and Technology Conference (2010), p.?2001.

5. K. Mochizuki, H. Itamoto, H. Aruga, K. Akiyama, Y. Horiguchi, S. Nishikawa, M. Nakaji, R. Takemura, and A. Sugitatsu, in Proceedings of 2010 15th Optoelectronics and Communications Conference (2010), p.?242.

6. C. Ferrari, C. Bolle, M. A. Cappuzzo, R. Keller, F. Klemens, Y. Low, N. Basavanhally, A. R. Papazian, F. Pardo, and M. P. Earnshaw, in Proceedings of European Conference on Optical Communication (2014), paper?Mo.4.5.2.

7. Z. Zhao, Y. Liu, Z. Zhang, X. Chen, J. Liu, and N. Zhu, Chin. Opt. Lett. 14, 120603 (2016).

8. H. Dai, J. An, Y. Wang, J. Zhang, L. Wang, H. Wang, J. Li, Y. Wu, F. Zhong, and Q. Zha, J. Semicond. 35, 104010 (2014).

9. C. Li, X. Qiu, and X. Li, Photon. Res. 5, 97 (2017).

10. K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 1182 (2001).

11. M. R. Amersfoort, C. R. Deboer, F. P. G. M. Vanham, M. K. Smit, P. Demeester, J. J. G. M. Vandertol, and A. Kuntze, Electron. Lett. 30, 300 (1994).

12. F. Nakajima, M. Kawamura, and K. Oki, in Proceedings of IEEE Photonics Conference 305 (2013), paper?TuG3.1.

13. Y. Doi, T. Ohyama, T. Hashimoto, S. Kamei, A. Ohki, M. Ishii, M. Yanagisawa, and S. Mino, in Conference on Lasers and Electro-Optics (2004), paper?CTuW1.

14. J. K. Lee, and Y. S. Jang, in Proceedings of International Conference on Information & Communication Technology Convergence (2015), p.?758.

15. B. Cheng, C. Li, Z. Liu, and C. Xue, J. Semicond. 37, 081001 (2016).

16. Z. Zhao, J. Liu, Y. Liu, and N. Zhu, J. Semicond. 38, 121001 (2017).

17. P. M. Anandarajah, R. Maher, L. P. Barry, A. Kaszubowska-Anandarajah, E. Connoly, T. Farrell, and D. McDonald, IEEE Photon. Technol. Lett. 20, 72 (2008).

18. J. W. Pan, and J. I. Chyi, IEEE J. Quantum Electron. 32, 2133 (1996).

19. D. Yin, T. He, Q. Han, Q. Lü, Y. Zhang, and X. Yang, J. Semicond. 37, 114006 (2016).

20. J. M. Lee, M. K. Kim, and W. Y. Choi, Chin. Opt. Lett. 15, 100401 (2017).

21. G. G. Mekonnen, W. Schlaak, H. G. Bach, R. Steingruber, A. Seeger, T. Engel, W. Passenberg, A. Umbach, C. Schramm, G. Unterborsch, and S. van Waasen, IEEE Photon. Technol. Lett. 11, 257 (1999).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387