2018-10-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 16 , 2018    10.3788/COL201816.060602


DFB fiber laser sensor for simultaneous measurement of acoustic and magnetic fields
Rui Ma1;2, Wentao Zhang1;2, Wenzhu Huang1;2, and Fang Li1;2
1 State Key Laboratory of Transducer Technology, [Institute of Semiconductors, Chinese Academy of Sciences], Beijing 1 00083, China
2 College of Materials Science and Opto-Electronic Technology, [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2018, 16(06): pp.060602

DOI:10.3788/COL201816.060602
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2310  060.2370  060.3510  230.3810  

Abstract
A novel distributed feedback (DFB) fiber laser sensor, which can measure acoustic and magnetic fields simultaneously, is proposed. The magnetic field can be measured by detecting the change of resonant frequency of the fiber laser, and the acoustic pressure can be measured by detecting the phase shift of the fiber laser. Both of the signals can be simultaneously demodulated in the frequency domain without affecting each other. Experimental studies show that the acoustic pressure sensitivity of this sensor is about ?130 dB (0 dB re 1 pm/μPa) and the sensor has a good linearity with a magnetic field sensitivity of 0.57 Hz/mT.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (517 KB)

Share:


Received:2018/2/13
Accepted:2018/4/16
Posted online:2018/5/30

Get Citation: Rui Ma, Wentao Zhang, Wenzhu Huang, and Fang Li, "DFB fiber laser sensor for simultaneous measurement of acoustic and magnetic fields," Chin. Opt. Lett. 16(06), 060602(2018)

Note: This work was supported by the Key R&D Program of China (No. 2017YFB0405503) and the Youth Innovation Promotion Association of CAS (No. 2016106).



References

1. Y. Tan, Y. Song, W. T. Zhang, and F. Li, Chin. Opt. Lett. 14, 120602 (2016).

2. B. W. Pan, L. Q. Yu, L. Guo, L. M. Zhang, D. Lu, X. Chen, Y. Wu, C. Y. Lou, and L. J. Zhao, Chin. Opt. Lett. 14, 030604 (2016).

3. J. Zhang, Z. Y. Kong, Y. Z. Liu, A. M. Wang, and Z. G. Zhang, Photon. Res. 4, 29 (2016).

4. A. D. Kersey, K. P. Koo, and M. A. Davis, Proc. SPIE 2292, 112 (1994).

5. W. T. Zhang, Y. L. Liu, F. Li, and X. Hao, J. Lightwave Technol. 26, 1352 (2008).

6. K. Vivek, R. Rajesh, C. V. Sreehari, K. S. Sham, K. Shajahan, T. V. Praveen, T. Santhanakrishnan, and K. P. B. Moosad, J. Lightwave Technol. 35, 4097 (2017).

7. L. H. Cheng, J. L. Han, L. Jin, Z. Z. Guo, and B. O. Guan, Opt. Express 21, 30162 (2013).

8. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, Meas. Sci. Technol. 20, 034023 (2009).

9. W. He, L. H. Cheng, Q. Yuan, Y. Z. Liang, L. Jin, and B. O. Guan, Chin. Opt. Lett. 13, 050602 (2015).

10. X. K. Bai, J. Yuan, J. Gu, S. F. Wang, Y. H. Zhao, S. L. Pu, and X. L. Zeng, IEEE Photon. Technol. Lett. 28, 118 (2015).

11. B. Yin, M. G. Wang, S. H. Wu, Y. Tang, S. C. Feng, Y. Wu, and H. W. Zhang, Opt. Express 25, 30955 (2017).

12. Z. G. Wang, W. T. Zhang, W. Z. Huang, S. W. Feng, and F. Li, Opt. Express 23, 24389 (2015).

13. F. Bourquin, and M. Joly, Smart Mater. Struct. 14, 247 (2004).

14. K. Rick, and A. Flatau, J. Intell. Mater. Syst. Struct. 15, 128 (2004).

15. G. S. Fang, T. W. Xu, and F. Li, 2188 (2013).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387