2018-06-23 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 16 , 2018    10.3788/COL201816.060201


Photoassociation reaction of OH molecules through reverse ladder transition
Yingyu Niu, Rong Wang
School of Science, [Dalian Jiaotong University], Dalian 116028, China

Chin. Opt. Lett., 2018, 16(06): pp.060201

DOI:10.3788/COL201816.060201
Topic:Atomic and molecular physics
Keywords(OCIS Code): 020.4180  320.5390  

Abstract
Photoassociation via reverse ladder transition controlled by two and four laser pulses is investigated using the time-dependent quantum wave packet method. The calculated results show that the amplitudes of the pulses have an enormous effect on the target population and total yield of association. For the target state with a high energy level, the population of background states can reduce the state-selectivity. Although, the total yield of association is decreased, the four pulses can induce the population transferring to low vibrational levels, and the state-selectivity of the target state is high.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (762 KB)

Share:


Received:2018/3/1
Accepted:2018/4/16
Posted online:2018/5/25

Get Citation: Yingyu Niu, Rong Wang, "Photoassociation reaction of OH molecules through reverse ladder transition," Chin. Opt. Lett. 16(06), 060201(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 11347012) and the Natural Science Foundation of Liaoning Province of China (No. 20170540135).



References

1. K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).

2. C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008 (2010).

3. X. Ma, C. Yang, M. Wang, Y. Gong, and W. Liu, Chin. Opt. Lett. 10, 110201 (2012).

4. K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, Phys. Rev. Lett. 105, 203001 (2010).

5. W. Salzmann, U. Poschinger, R. Wester, M. Weidemüller, A. Merli, S. M. Weber, M. Sauer, M. Plewicki, F. Weise, A. M. Esparza, L. W?ste, and A. Lindinger, Phys. Rev. A 73, 023414 (2006).

6. B. L. Brown, A. J. Dicks, and I. A. Walmsley, Phys. Rev. Lett. 96, 173002 (2006).

7. X. Hu, T. Xie, Y. Huang, and S. Cong, Phys. Rev. A 89, 052712 (2014).

8. M. V. Korolkov, and B. Schmidt, Chem. Phys. Lett. 361, 432 (2002).

9. J. Pérez-Ros, M. Lepers, and O. Dulieu, Phys. Rev. Lett. 115, 073201 (2015).

10. S. Dutta, J. Lorenz, A. Altaf, D. S. Elliott, and Y. P. Chen, Phys. Rev. A 89, 020702(R) (2014).

11. W. Gunton, M. Semczuk, N. S. Dattani, and K. W. Madison, Phys. Rev. A 88, 062510 (2013).

12. J. Yuan, Z. Ji, Z. Li, Y. Zhao, L. Xiao, and S. Jia, J. Chem. Phys. 143, 044311 (2015).

13. J. Deiglmayr, A. Grochola, M. Repp, K. M?rtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Phys. Rev. Lett. 101, 133004 (2008).

14. P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, Phys. Rev. A 84, 061401(R) (2011).

15. J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, Phys. Rev. A 86, 053428 (2012).

16. Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, Phys. Rev. A 85, 013401 (2012).

17. D. B. Blasing, I. C. Stevenson, J. Pérez-Ros, D. S. Elliott, and Y. P. Chen, Phys. Rev. A 94, 062504 (2016).

18. G. K. Paramonov, and P. Saalfrank, Phys. Rev. A 79, 013415 (2009).

19. P. Marguetand, and V. Engel, J. Phys. B 41, 074026 (2008).

20. E. A. Shapiro, M. Shapiro, A. Pe’er, and J. Ye, Phys. Rev. A 75, 013405 (2007).

21. J. Li, Y. Huang, T. Xie, S. Chai, and S. Cong, Commun. Comput. Phys. 17, 79 (2015).

22. E. F. de Lima, T. S. Ho, and H. Rabitz, Chem. Phys. Lett. 501, 267 (2011).

23. Y. Niu, S. Wang, and S. Cong, Chem. Phys. Lett. 428, 7 (2006).

24. M. V. Korolkov, J. Manz, G. K. Paramonov, and B. Schmidt, Chem. Phys. Lett. 260, 604 (1996).

25. E. F. de Lima, T. S. Ho, and H. Rabitz, Phys. Rev. A 78, 063417 (2008).

26. P. Marquetand, and V. Engel, J. Chem. Phys. 127, 084115 (2007).

27. M. V. Korolkov, and G. K. Paramonov, Phys. Rev. A 57, 4998 (1998).

28. Y. Niu, R. Wang, and M. H. Qiu, Phys. Rev. A 84, 023406 (2011).

29. J. Wang, G. Yang, J. He, and J. Wang, Chin. Opt. Lett. 15, 050203 (2017).

30. E. Luc-Koenig, M. Vatasescu, and F. Masnou-Seeuws, Eur. Phys. J. D 31, 239 (2004).

31. K. Willner, O. Dulieu, and F. Masnou-Seeuwsa, J. Chem. Phys. 120, 548 (2003).

32. X. Yuan, C. Liu, P. Wei, Z. Zeng, and R. Li, Chin. Opt. Lett. 14, 030201 (2016).

33. M. V. Korolkov, Y. A. Logvin, and G. K. Paramonov, J. Phys. Chem. 100, 8070 (1996).

34. F. E. de Lima, and J. E. M. Hornos, Chem. Phys. Lett. 433, 48 (2006).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387