2018-10-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.052701


Generation of intensity difference squeezed state at a wavelength of 1.34 μm
Meiru Huo1, Jiliang Qin1, Yingrong Sun1, Zhihui Yan1;2, Xiaojun Jia1;2
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, [Shanxi University], Taiyuan 030006, China
2Collaborative Innovation Center of Extreme Optics, [Shanxi University], Taiyuan 030006, China

Chin. Opt. Lett., 2018, 16(05): pp.052701

DOI:10.3788/COL201816.052701
Topic:Quantum optics
Keywords(OCIS Code): 270.0270  270.6570  

Abstract
The intensity difference squeezed state, which means that the fluctuation of the intensity difference between signal and idler beams is less than that of the corresponding shot noise level (SNL), plays an important role in high sensitivity measurement, quantum imaging, and quantum random numbers generation. When an optical parametric oscillator consisting of a type-II phase-matching periodically poled KTiOPO4 crystal operates above the threshold, an intensity difference squeezed state at a telecommunication wavelength can be obtained. The squeezing of 7.7+(-)0.5 dB below the SNL is achieved in an analysis frequency region of 2.4–5.0 MHz.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (401 KB)

Share:


Received:2018/2/5
Accepted:2018/4/3
Posted online:2018/5/4

Get Citation: Meiru Huo, Jiliang Qin, Yingrong Sun, Zhihui Yan, Xiaojun Jia, "Generation of intensity difference squeezed state at a wavelength of 1.34 μm," Chin. Opt. Lett. 16(05), 052701(2018)

Note: This work was supported by the National Key R&D Program of China (No. 2016YFA0301402), the National Natural Science Foundation of China (Nos. 11474190, 61601270, 11654002, and 61775127), the Program for Sanjin Scholars of Shanxi Province and the Fund for Shanxi “1331” Project Key Subjects Construction.



References

1. S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).

2. C. Zhou, C. Zhang, H. Liu, K. Liu, H. Sun, and J. Gao, Chin. Opt. Lett. 15, 092703 (2017).

3. N. Huo, C. Zhou, H. Sun, K. Liu, and J. Gao, Chin. Opt. Lett. 14, 062702 (2016).

4. N. J. Cerf,M. Levy, and G. V. Assche, Phys. Rev. A 63, 052311 (2001).

5. R. G. Patron and N. J. Cerf, Phys. Rev. Lett. 102, 130501 (2009).

6. The LIGO Scientific Collaboration, Nat. Photon. 7, 613 (2013).

7. N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H. A. Bachor, and P. K. Lam, Science 301, 940 (2003).

8. H. Yonezawa, D. Nakane, T. A. Wheatley, K. Iwasawa, S. Takeda, H. Arao, K. Ohki, K. Tsumura, D. W. Berry, T. C. Ralph, H. M. Wiseman, E. H. Huntington, and A. Furusawa, Science 337, 1514 (2012).

9. A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, and U. L. Anderson, Nat. Photon. 9, 577 (2015).

10. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys. Rev. Lett. 68, 3663 (1992).

11. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Science 282, 706 (1998).

12. X. J. Jia, X. L. Su, Q. Pan, J. R. Gao, C. D. Xie, and K. C. Peng, Phys. Rev. Lett. 93, 250503 (2004).

13. X. L. Su, S. H. Hao, X. W. Deng, L. Y. Ma, M. H. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, Nat. Commun. 4, 2828 (2013).

14. V. Giovannetti, S. Lloyd, and L.Maccone, Nat. Photon. 5, 222 (2011).

15. R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, Opt. Express 17, 16722 (2009).

16. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).

17. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, Phys. Rev. A 78, 043816 (2008).

18. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, Opt. Lett. 32, 178 (2007).

19. R. Ma, W. Liu, Z. Z. Qin, X. J. Jia, and J. R. Gao, Phys. Rev. A 96, 043843 (2017).

20. Z. Z. Qin, L. M. Cao, H. L. Wang, A. M. Marino, W. P. Zhang, and J. T. Jing, Phys. Rev. Lett. 113, 023602 (2014).

21. L.M.Cao,J.Qi,J. J. Du, andJ. T. Jing,Phys.Rev. A95, 023803 (2017).

22. L. M. Cao, J. J. Du, J. L. Feng, Z. Z. Qin, A. M. Marino, M. I. Kolobov, and J. T. Jing, Opt. Lett. 42, 1201 (2017).

23. H. L.Wang, C. Fabre, and J. T. Jing, Phys. Rev. A 95, 051802 (2017).

24. J. J. Du, L. M. Cao, K. Zhang, and J. T. Jing, Appl. Phys. Lett. 110, 241103 (2017).

25. W. Wang, L. M. Cao, Y. B. Lou, J. J. Du, and J. T. Jing, Appl. Phys. Lett. 112, 034101 (2018).

26. A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, Phys. Rev. Lett. 59, 2555 (1987).

27. J. R. Gao, F. Y. Cui, C. Y. Xue, C. D. Xie, and K. C. Peng, Opt. Lett. 23, 870 (1998).

28. J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, Phys. Rev. Lett. 91, 213601 (2003).

29. Y. Zhang, K. Kasai, and M. Watanabe, Opt. Express 11, 14 (2003).

30. R. X. Guo, X. J. Jia, C. D. Xie, and K. C. Peng, Opt. Commun. 211, 243 (2002).

31. X. L. Su, A. H. Tan, X. J. Jia, Q. Pan, C. D. Xie, and K. C. Peng, Opt. Lett. 31, 1133 (2006).

32. P. H. S. Ribeiro, C. Schwob, A. Maitre, and C. Fabre, Opt. Lett. 22, 1893 (1997).

33. H. Wang, Y. Zhang, Q. Pan, H. Su, A. Porzio, C. D. Xie, and K. C. Peng, Phys. Rev. Lett. 82, 1414 (1999).

34. L. Yang and Y. Xia, Chin. Opt. Lett. 15, 052701 (2017).

35. C. D. Nabors and R. M. Shelby, Phys. Rev. A 42, 556 (1990).

36. T. A. B. Kennedy, Phys. Rev. A 44, 2113 (1991).

37. G. Brida, M. Genovese, and I. Ruo-Berchera, Nat. Photon. 4, 227 (2010).

38. T.Lunghi, J. B. Brask, C. C.W. Lim,Q. Lavigne, J.Bowles,A.Martin, H. Zbinden, and N. Brunner, Phys. Rev. Lett. 114, 150501 (2015).

39. Q. Zhang, X. W. Deng, C. X. Tian, and X. L. Su, Opt. Lett. 42, 895 (2017).

40. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Phys. Rev. Lett. 82, 2594 (1999).

41. Y. C. Zhu, J. H. Shi, H. Li, and G. H. Zeng, Chin. Opt. Lett. 12, 071101 (2014).

42. Y. H. Zheng, Z. Q. Wu, M. R. Huo, and H. J. Zhou, Chin. Phys. B 22, 094206 (2013).

43. M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, Appl. Phys. Lett. 109, 221101 (2016).

44. C. Fabre, E. Giacobino, A. Heidmann, and S. Reynaud, J. Phys. 50, 1209 (1989).

45. J. L. Qin, Z. H. Yan, M. R. Huo, X. J. Jia, and K. C. Peng, Chin. Opt. Lett. 14, 122701 (2016).

46. H. D. Lu, Y. R. Guo, and K. C. Peng, Opt. Lett. 40, 5196 (2015).

47. Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, Opt. Express 18, 6149 (2010).

48. H. P. Yuen and V. W. S. Chan, Opt. Lett. 8, 177 (1983).

49. J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, and E. Giacobino, Opt. Lett. 16, 1234 (1991).

50. M. A. Shemis, A. M. Ragheb, E. Alkhazraji, M. A. Esmail, H. Fathallah, S. Alshebeili, and M. Z. M. Khan, Chin. Opt. Lett. 15, 100604 (2017).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387