2018-05-27 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.052701


Generation of intensity difference squeezed state at a wavelength of 1.34 μm
Meiru Huo1, Jiliang Qin1, Yingrong Sun1, Zhihui Yan1;2, and Xiaojun Jia1;2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, [Shanxi University], Taiyuan 030006, China
2 Collaborative Innovation Center of Extreme Optics, [Shanxi University], Taiyuan 030006, China

Chin. Opt. Lett., 2018, 16(05): pp.052701

DOI:10.3788/COL201816.052701
Topic:Ultrafast optics
Keywords(OCIS Code): 190.4410  320.7110  

Abstract
The intensity difference squeezed state, which means that the fluctuation of the intensity difference between signal and idler beams is less than that of the corresponding shot noise level (SNL), plays an important role in high sensitivity measurement, quantum imaging, and quantum random numbers generation. When an optical parametric oscillator consisting of a type-II phase-matching periodically poled KTiOPO4 crystal operates above the threshold, an intensity difference squeezed state at a telecommunication wavelength can be obtained. The squeezing of 7.7±0.5 dB below the SNL is achieved in an analysis frequency region of 2.4–5.0 MHz.In this Letter, we experimentally explore the pulse-contrast degradation caused by surface reflection in optical parameter chirped-pulse amplification. Different pump-to-signal conversion efficiencies and post-pulses with different intensities are obtained by changing the seed-pulse or pump-pulse energy and inserting etalons with different reflection coefficients, respectively. The contrast measurements show that the generated first pre-pulse intensity is proportional to the product of the surface reflection intensity ratio and the square of the pump-to-signal conversion efficiency.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (451 KB)

Share:


Received:2018/1/3
Accepted:2018/4/3
Posted online:2018/4/27

Get Citation: Meiru Huo, Jiliang Qin, Yingrong Sun, Zhihui Yan, and Xiaojun Jia, "Generation of intensity difference squeezed state at a wavelength of 1.34 μm," Chin. Opt. Lett. 16(05), 052701(2018)

Note: This work was supported by the National Key R&D Program of China (No. 2016YFA0301402), the National Natural Science Foundation of China (Nos. 11474190, 61601270, 11654002, and 61775127), the Program for Sanjin Scholars of Shanxi Province and the Fund for Shanxi “1331” Project Key Subjects Construction.This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB1603), the International S&T Cooperation Program of China (No. 2016YFE0119300), and the National Natural Science Foundation of China (NSFC) (Nos. 61521093 and 61505234).



References

1. S. L. Braunstein, and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).

2. C. Zhou, C. Zhang, H. Liu, K. Liu, H. Sun, and J. Gao, Chin. Opt. Lett. 15, 092703 (2017).

3. N. Huo, C. Zhou, H. Sun, K. Liu, and J. Gao, Chin. Opt. Lett. 14, 062702 (2016).

4. N. J. Cerf, M. Levy, and G. V. Assche, Phys. Rev. A 63, 052311 (2001).

5. R. G. Patron, and N. J. Cerf, Phys. Rev. Lett. 102, 130501 (2009).

COL201816053201-

Experimental investigation on pulse-contrast degradation caused by surface reflection in optical parametric chirped-pulse amplification

Xinliang Wang1;2;3, Xiaoming Lu2, Xiaoyang Guo4, Rongjie Xu2,and Yuxin Leng2;3

1 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China

2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 2 01800, China

3 University of Chinese Academy of Sciences, Beijing 100049, China

4 Osaka University, Osaka 565-0871, Japan

1. D. Strickland, and G. Mourou, Opt. Commun. 55, 447 (1985).

2. C. Dorrer, I. A. Begishev, A. V. Okishev, and J. D. Zuegel, Opt. Lett. 32, 2143 (2007).

3. D. N. Papadopoulos, P. Ramirez, K. Genevrier, L. Ranc, N. Lebas, A. Pellegrina, C. Le Blanc, P. Monot, L. Martin, J. P. Zou, F. Mathieu, P. Audebert, P. Georges, and F. Druon, Opt. Lett. 42, 3530 (2017).

4. X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, Opt. Lett. 42, 2014 (2017).

5. Z. Gan, L. Yu, S. Li, C. Wang, X. Liang, Y. Liu, W. Li, Z. Guo, Z. Fan, X. Yuan, L. Xu, Z. Liu, Y. Xu, J. Lu, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, Opt. Express 25, 5169 (2017).

6. J. H. Sung, H. W. Lee, J. Y. Yoo, J. W. Yoon, C. W. Lee, J. M. Yang, Y. J. Son, Y. H. Jang, S. K. Lee, and C. H. Nam, Opt. Lett. 42, 2058 (2017).

7. D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C. G. Wahlstr?m, and P. McKenna, Appl. Phys. Lett. 89, 021502 (2006).

8. J. Gao, F. Liu, X. Ge, Y. Deng, G. Zhang, Y. Fang, W. Wei, S. Yang, X. Yuan, M. Chen, Z. Sheng, and J. Zhang, Chin. Opt. Lett. 15, 081902 (2017).

9. J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, Opt. Commun. 148, 70 (1998).

10. K. Kondo, H. Maeda, Y. Hama, S. Morita, A. Zoubir, R. Kodama, K. A. Tanaka, Y. Kitagawa, and Y. Izawa, J. Opt. Soc. Am. B 23, 231 (2006).

11. X. Lu, X. Wang, Y. Leng, X. Guo, Y. Li, Y. Peng, R. Xu, Y. Xu, and X. Qi, IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

12. S. Keppler, R. B?defeld, M. Hornung, A. S?vert, J. Hein, and M. C. Kaluza, Appl. Phys. B 104, 11 (2011).

13. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Y. Tenyakov, Opt. Express 16, 3178 (2008).

14. J. Wang, P. Yuan, J. Ma, Y. Wang, G. Xie, and L. Qian, Opt. Express 21, 15580 (2013).

15. X. Lu, Y. Peng, Y. Li, X. Guo, Y. Leng, Z. Sui, Y. Xu, and X. Wang, Chin. Opt. Lett. 14, 023201 (2016).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387