2018-10-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.051402


An improved strontium lattice clock with 10?16 level laser frequency stabilization
Ye Li1;2, Yige Lin1, Qiang Wang1, Tao Yang1, Zhen Sun2, Erjun Zang1, and Zhanjun Fang1
1 Division of Time and Frequency Metrology, [National Institute of Metrology], Beijing 1 00029, China
2 Department of Precision Instrument, [Tsinghua University], Beijing 100084, China

Chin. Opt. Lett., 2018, 16(05): pp.051402

DOI:10.3788/COL201816.051402
Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3425  140.4780  

Abstract
A clock laser based on a 30-cm-long ultrahigh finesse optical cavity was developed to improve the frequency stability of the Sr optical lattice clock at the National Institute of Metrology. Using this clock laser to probe the spin-polarized Sr87 atoms, a Rabi transition linewidth of 1.8 Hz was obtained with 500 ms interrogation time. Two independent digital servos are used to alternatively lock the clock laser to the S01?(mF=+9/2)→P03?(mF=+9/2) transition. The Allan deviation shows that the short-term frequency stability is better than 3.2×10?16 and averages down followed by 1.8×10?15/τ.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (536 KB)

Share:


Received:2018/1/25
Accepted:2018/3/7
Posted online:2018/4/24

Get Citation: Ye Li, Yige Lin, Qiang Wang, Tao Yang, Zhen Sun, Erjun Zang, and Zhanjun Fang, "An improved strontium lattice clock with 10?16 level laser frequency stabilization," Chin. Opt. Lett. 16(05), 051402(2018)

Note: This work was supported by the National Key R&D Program of China (Nos. 2016YFF0200201 and 2017YFA0304404) and the National Natural Science Foundation of China (Nos. 91336212 and 91436104). The authors thank Prof. Longsheng Ma from East China Normal University and Prof. Lisheng Chen from Wuhan Institute of Physics and Mathematics for their meaningful discussions.



References

1. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, Science 341, 1215 (2013).

2. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, Nature 506, 71 (2014).

3. T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, Nat. Commun. 6, 6896 (2015).

4. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, Nat. Photon. 9, 185 (2015).

5. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Phys. Rev. Lett. 116, 063001 (2016).

6. S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, Science 358, 90 (2017).

7. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, and T. Rosenband, Nat. Photon. 5, 425 (2011).

8. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, and K. Ackley, Phys. Rev. Lett. 116, 061102 (2016).

9. K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, and J. Alnis, Science 336, 441 (2012).

10. I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, and W. C. Swann, Nat. Photon. 3, 351 (2009).

11. Q. Liu, S. Han, J. Wang, Z. Feng, W. Chen, N. Cheng, Y. Gui, H. Cai, and S. Han, Chin. Opt. Lett. 14, 070602 (2016).

12. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon, S. F. Foreman, M. M. Boyd, S. Blatt, and J. Ye, Opt. Lett. 32, 641 (2007).

13. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, Nat. Photon. 5, 158 (2011).

14. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, and F. Riehle, Nat. Photon. 6, 687 (2012).

15. L. Wu, Y. Jiang, C. Ma, W. Qi, H. Yu, Z. Bi, and L. Ma, Sci. Rep. 6, 24969 (2016).

16. S. H?fner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Christian, and U. Sterr, Opt. Lett. 40, 2112 (2015).

17. D. G. Matei, T. Legero, S. H?fner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, Phys. Rev. Lett. 118, 263202 (2017).

18. Y. Li, Y. Lin, Q. Wang, S. Wang, Y. Zhao, F. Meng, B. Lin, J. Cao, T. Li, Z. Fang, and E. Zang, Chin. Phys. Lett. 31, 66 (2014).

19. Y. Lin, Q. Wang, Y. Li, F. Meng, B. Lin, E. Zang, Z. Sun, F. Fang, T. Li, and Z. Fang, Chin. Phys. Lett. 32, 090601 (2015).

20. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).

21. Z. Xiong, Y. Long, H. Xiao, X. Zhang, L. He, and B. Lü, Chin. Opt. Lett. 9, 041406 (2011).

22. L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, Opt. Lett. 19, 1777 (1994).

23. T. Legero, T. Kessler, and U. Sterr, J. Opt. Soc. Am. B 27, 914 (2010).

24. W. Qi, Y. Jiang, X. Li, L. Jin, Z. Bi, and L. Ma, Chin. Opt. Lett. 14, 101401 (2016).

25. S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, C. Hagemann, A. Al-Masoudi, S. H?fner, S. Vogt, U. Sterr, and C. Christian, New J. Phys. 16, 073023 (2014).

26. IEEE Standards Coordinating Committee, IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology—Random Instabilities (IEEE Standards, 1999).

27. S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Christian, Metrologia 48, 399 (2011).

28. A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. J. Martin, S. M. Foreman, J. Ye, T. M. Fortier, Y. Le Coq, Z. W. Barber, N. Poli, and C. W. Oates, Science 319, 1805 (2008).

29. T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, Phys. Rev. Lett. 109, 230801 (2012).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387