2018-05-27 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.051401

Highly efficient CW laser operation in 4 at. % Tm3+ and 4 at. % Y3+ codoped CaF2 crystals
Xinsheng Guo1;2, Qinghui Wu2, Linyang Guo3, Fengkai Ma2, Fei Tang2, Cheng Zhang4, Jie Liu4, Bingchu Mei1, and Liangbi Su2;5
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, [Wuhan Institute of Technology], Wuhan 430070, China
2 Synthetic Single Crystal Research Center, Key Laboratory of Transparent and Opto-Functional Inorganic Materials, [Shanghai Institute of Ceramics, Chinese Academy of Sciences], Shanghai 2 01899, China
3 State Key Laboratory on High Power Semiconductor Lasers, [Changchun University of Science and Technology], Changchun 13 0022, China
4 Shandong Provincial Key Laboratory of Optics and Photonic Device, College of Physics and Electronics, [Shandong Normal University], Jinan 250014 , China
5 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, [Shanghai Institute of Ceramics, Chinese Academy of Sciences], Shanghai 201899, China

Chin. Opt. Lett., 2018, 16(05): pp.051401

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.2020  140.3070  140.3380  140.3480  

Tm:CaF2 and Tm,Y:CaF2 single crystals were prepared by the temperature gradient technique. The spectral properties of Tm,Y:CaF2 single crystals were investigated and compared with those of Tm:CaF2. It was demonstrated that codoping with Y3+ ions could efficiently improve the spectroscopic properties. Tm,Y:CaF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections, and much longer fluorescence lifetimes of the upper laser level (Tm3+:?H43 level) than Tm:CaF2 crystals. Continuous-wave (CW) lasers around 1.97 μm were demonstrated in 4.0 at. % Tm,4.0 at. % Y:CaF2 single crystals under 792 nm laser diode (LD) pumping. The best laser performance has been demonstrated with a low threshold of 0.368 W, a high slope efficiency of 54.8%, and a maximum output power of 1.013 W.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (555 KB)


Posted online:2018/4/25

Get Citation: Xinsheng Guo, Qinghui Wu, Linyang Guo, Fengkai Ma, Fei Tang, Cheng Zhang, Jie Liu, Bingchu Mei, and Liangbi Su, "Highly efficient CW laser operation in 4 at. % Tm3+ and 4 at. % Y3+ codoped CaF2 crystals," Chin. Opt. Lett. 16(05), 051401(2018)

Note: This work was financially supported by the National Natural Science Foundation of China (Nos. 61422511, 61635012, and 51432007) and the Strategic Priority Program of the Chinese Academy of Sciences (No. XDB16030000).


1. K. S. Lai, P. B. Phua, R. F. Wu, Y. L. Lim, E. Lau, S. W. Toh, B. T. Toh, and A. Chng, Opt. Lett. 25, 1591 (2000).

2. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, Opt. Lett. 36, 948 (2011).

3. X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, Chin. Opt. Lett. 6, 591 (2008).

4. W. Liu, Y. L. Ju, T. Y. Dai, L. W. Xu, J. H. Yuan, C. Yang, B. Q. Yao, and X. M. Duan, Chin. Opt. Lett. 14, 091401 (2016).

5. P. W. Kuan, X. K. Fan, W. T. Li, X. Q. Liu, C. L. Yu, L. Zhang, and L. L. Hu, Chin. Opt. Lett. 14, 081601 (2016).

6. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, and V. Zarifis, Appl. Opt. 35, 7117 (1996).

7. U. N. Singh, and J. R. Yu, in Proc. IEEE Int. Conf. on Recent Advances in Space Technologies (2003), p.?485.

8. A. N. Belyaev, A. N. Chabushkin, and S. A. Khrushchalina, Laser. Med. Sci. 31, 503 (2016).

9. S. Wenk, S. Furst, V. Danicke, and D. T. Kunde, in Advances in Medical Engineering , BuzugT. M. ed. (Springer, 2007), p.?447.

10. B. Ropoulos, Photon. Spectra. 30, 116 (1996).

11. J. G. Manni, Opt. Photon. News. 7(7), 23 (1996).

12. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. B. 17, 723 (2000).

13. D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, and M. Jiang, Opt. Lett. 33, 315 (2008).

14. A. A. Kaminskii, Laser. Photon. Rev. 1, 93 (2010).

15. Z. P. Qin, G. Q. Xie, J. Ma, W. Y. Ge, P. Yuan, L. J. Qian, L. B. Su, D. P. Jiang, F. K. Ma, Q. Zhang, Y. X. Cao, and J. Xu, Opt. Lett. 39, 1737 (2014).

16. P. A. Popov, P. P. Fedorov, V. M. Reiterov, E. A. Garibin, A. A. Demidenko, I. A. Mironov, and V. V. Osiko, Doklady Phys. 53, 198 (2008).

17. M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, Opt. Lett. 33, 2770 (2008).

18. A. Kessler, M. Hornung, S. Keppler, F. Schorcht, M. Hellwing, H. Liebetrau, J. K?rner, A. S?vert, M. Siebold, M. Schnepp, J. Hein, and M. C. Kaluza, Opt. Lett. 39, 1333 (2014).

19. Z. P. Qin, G. Q. Xie, J. Ma, W. Y. Ge, P. Yuan, L. J. Qian, L. B. Su, D. P. Jiang, F. K. Ma, Q. Zhang, Y. X. Cao, and J. Xu, Opt. Lett. 39, 1737 (2014).

20. F. K. Ma, D. P. Jiang, L. B. Su, J. Y. Wang, W. Cai, J. Liu, J. G. Zheng, W. G. Zheng, J. Xu, and Y. Liu, Opt. Lett. 41, 501 (2016).

21. L. B. Su, Q. G. Wang, H. J. Li, G. Brasse, P. Camy, J. L. Doualan, A. Braud, R. Moncorgé, Y. Y. Zhan, L. H. Zheng, X. B. Qian, and J. Xu, Laser Phys. Lett. 10, 035804 (2013).

22. P. A. Ryabochkina, Quantum Electron. 42, 853 (2012).

23. A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, Opt. Mater. 35, 1859 (2013).

24. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, Opt. Commun. 236, 395 (2004).

25. X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, Opt. Lett. 42, 2567 (2017).

26. J. L. Doualan, P. Camy, R. Moncorgé, E. Daran, M. Couchaud, and B. Ferrand, J. Fluorine. Chem. 128, 459 (2007).

27. B. J. Fei, J. Q. Huang, W. Guo, Q. F. Huang, J. Chen, F. Tang, W. C. Wang, and Y. G. Cao, J. Lumin. 142, 189 (2013).

28. K. J. Yang, T. L. Feng, S. Z. Zhao, C. Liu, T. Li, W. W. Ma, Z. T. Zou, Q. G. Wang, L. B. Su, P. Solarz, R. Lisiecki, J. Komar, J. Xu, L. H. Zheng, and W. Ryba-Romanowski, J. Alloy. Compd. 712, 412 (2017).

29. B. Liu, L. H. Zheng, Q. G. Wang, J. F. Liu, L. B. Su, H. L. Tang, J. Liu, X. W. Fan, F. Wu, P. Luo, H. Y. Zhao, J. J. Shi, N. T. He, N. Li, Q. Li, C. Guo, X. D. Xu, Z. S. Wang, and J. Xu, Chin. Phys. B 26, 084203 (2017).

30. R. Moncorgk, N. Garnier, P. Kerbrat, C. Wyon, and C. Bore, Opt. Commun. 141, 29 (1997).

31. Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, Laser Phys. 23, 105806 (2013).

32. Y. L. Lu, Y. B. Dai, J. Wang, Y. Yang, A. P. Dong, S. H. Li, and B. D. Sun, Opt. Commun. 273, 182 (2007).

33. C. Brian, and G. Lew, Opt. Lett. 42, 2259 (2000).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387