2018-08-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.050201


Widely tunable laser frequency offset locking to the atomic resonance line with frequency modulation spectroscopy
Anqi Wang, Zhixin Meng, and Yanying Feng
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, [Tsinghua University], Beijing 100084, China

Chin. Opt. Lett., 2018, 16(05): pp.050201

DOI:10.3788/COL201816.050201
Topic:Atomic and molecular physics
Keywords(OCIS Code): 020.1335  140.3425  140.3518  300.6380  

Abstract
A simple and robust technique is reported to offset lock a single semiconductor laser to the atom resonance line with a frequency difference easily adjustable from a few tens of megahertz up to tens of gigahertz. The proposed scheme makes use of the frequency modulation spectroscopy by modulating sidebands of a fiber electro-optic modulator output. The short-term performances of a frequency offset locked semiconductor laser are experimentally demonstrated with the Allan variance of around 3.9×10?11 at a 2 s integration time. This method may have many applications, such as in Raman optics for an atom interferometer.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (788 KB)

Share:


Received:2018/1/1
Accepted:2018/3/23
Posted online:2018/4/23

Get Citation: Anqi Wang, Zhixin Meng, and Yanying Feng, "Widely tunable laser frequency offset locking to the atomic resonance line with frequency modulation spectroscopy," Chin. Opt. Lett. 16(05), 050201(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 61473166).



References

1. A. Castrillo, E. Fasci, G. Galzerano, G. Casa, P. Laporta, and L. Gianfrani, Opt. Express 18, 21851 (2010).

2. S. Pan, and M. Xue, J. Lightwave Technol. 35, 836 (2017).

3. J. Du, Y. Sun, D. Chen, Y. Mu, M. Huang, Z. Yang, J. Liu, D. Bi, X. Hou, and W. Chen, Chin. Opt. Lett. 15, 031401 (2017).

4. K. Harada, T. Aoki, S. Ezure, K. Kato, T. Hayamizu, H. Kawamura, T. Inoue, H. Arikawa, T. Ishikawa, T. Aoki, A. Uchiyama, K. Sakamoto, S. Ito, M. Itoh, S. Ando, A. Hatakeyama, K. Hatanaka, K. Imai, T. Urakami, H. S. Nataraj, Y. Shimizu, T. Sato, T. Wakasa, H. P. Yoshida, and Y. Sakemi, Appl. Opt. 55, 1164 (2016).

5. M. Kasevich, and S. Chu, Phys. Rev. Lett. 67, 181 (1991).

6. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).

7. K. Numata, J. R. Chen, and S. T. Wu, Opt. Express 20, 14234 (2012).

8. S. Jin, L. Xu, P. Herczfeld, A. Bhardwaj, and Y. Li, Photon. Res. 2, B45–B53 (2014).

9. N. Seymour-Smith, P. Blythe, M. Keller, and W. Lange, Rev. Sci. Instrum. 81, 075109 (2010).

10. P. Bohlouli-Zanjani, K. Afrousheh, and J. D. D. Martin, Rev. Sci. Instrum. 77, 093105 (2006).

11. F. B. J. Buchkremer, R. Dumke, C. Buggle, G. Birkl, and W. Ertmer, Rev. Sci. Instrum. 71, 3306 (2000).

12. M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).

13. U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, Rev. Sci. Instrum. 70, 242 (1999).

14. T. Stace, A. N. Luiten, and R. P. Kovacich, Meas. Sci. Technol. 9, 1635 (1998).

15. G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, Appl. Phys. B 79, 363 (2004).

16. S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thévenaz, Appl. Opt. 47, 4336 (2008).

17. K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, Appl. Opt. 53, 2632 (2014).

18. F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, J. Opt. Soc. Am. B 26, 1315 (2009).

19. G. Yang, Y. Xu, Q. Lin, and H. Zhang, Chin. Opt. Lett. 11, 100201 (2013).

20. A. L. Marchant, S. H?ndel, T. P. Wiles, S. A. Hopkins, C. S. Adams, and S. L. Cornish, Opt. Lett. 36, 64 (2011).

21. P. Yun, B. Tan, W. Deng, and S. Gu, Rev. Sci. Instrum. 82, 123104 (2011).

22. W. Peng, L. Zhou, S. Long, J. Wang, and M. Zhan, Opt. Lett. 39, 2998 (2014).

23. G. C. Bjorklund, Opt. Lett. 5, 15 (1980).

24. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).

25. J. A. Silver, Appl. Opt. 31, 707 (1992).

26. M. Gehrtz, E. A. Whittaker, and G. C. Bjorklund, J. Opt. Soc. Am. B 2, 1510 (1985).

27. Z. Jiang, Y. Feng, X. Yan, and S. Chen, Proc. SPIE 9671, 967104 (2015).

28. B. Yang, J. Wang, H. Liu, J. He, and J. Wang, Opt. Commun. 319, 174 (2014).

29. Y. Luo, S. Yan, A. Jia, C. Wei, Z. Li, E. Wang, and J. Yang, Chin. Opt. Lett. 14, 121401 (2016).

30. D. S. Elliot, R. Roy, and S. J. Smith, Phys. Rev. A 26, 12 (1982).

31. H. Xue, Y. Feng, S. Chen, X. Wang, X. Yan, Z. Jiang, and Z. Zhou, J. Appl. Phys. 117, 094901 (2015).

32. K. Harada, T. Aoki, S. Ezure, K. Kato, T. Hayamizu, H. Kawamura, T. Inoue, H. Arikawa, T. Ishikawa, T. Aoki, A. Uchiyama, K. Sakamoto, S. Ito, M. Itoh, S. Ando, A. Hatakeyama, K. Hatanaka, K. Imai, T. Murakami, H. S. Nataraj, Y. Shimizu, T. Sato, T. Wakasa, H. P. Yoshida, and Y. Sakemi, Appl. Opt. 55, 1164 (2016).

33. A. N. Dharamsi, J. Phys. D 29, 540 (1996).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387