2018-05-27 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.050101

52 m/9 Gb/s PAM4 plastic optical fiber-underwater wireless laser transmission convergence with a laser beam reducer
Chung-Yi Li1, Hai-Han Lu1, Xu-Hong Huang2, Yun-Chieh Wang1, Jen-Chieh Chang1, and Pei-Hsien Chew1
1 Institute of Electro-Optical Engineering, [Taipei University of Technology], Taipei 1 0608, China
2 School of Information Science and Engineering, [Fujian University of Technology], Fuzhou 350118, China

Chin. Opt. Lett., 2018, 16(05): pp.050101

Topic:Atmospheric optics and oceanic optics
Keywords(OCIS Code): 010.3310  010.7340  140.7300  

A 52 m/9 Gb/s four-level pulse amplitude modulation (PAM4) plastic optical fiber (POF)-underwater wireless laser transmission (UWLT) convergence with a laser beam reducer is proposed. A 52 m/9 Gb/s PAM4 POF-UWLT convergence is practically demonstrated with the application of a laser beam reducer to reduce the collimated beam diameter. A 50 m graded-index (GI)-POF is employed as an underwater extender to efficiently enhance the coverage of UWLT. The performances of PAM4 POF-UWLT convergence in view of bit error rate (BER) and eye diagrams improve with the decrease of the collimated beam diameter because of the small amount of light absorbed by clear ocean water. Competent BER and eye diagrams (three independent eye diagrams) are achieved over a 50 m GI-POF transmission with a 2 m clear ocean water link.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (645 KB)


Posted online:2018/4/23

Get Citation: Chung-Yi Li, Hai-Han Lu, Xu-Hong Huang, Yun-Chieh Wang, Jen-Chieh Chang, and Pei-Hsien Chew, "52 m/9 Gb/s PAM4 plastic optical fiber-underwater wireless laser transmission convergence with a laser beam reducer," Chin. Opt. Lett. 16(05), 050101(2018)

Note: The authors thank the financial support from the Ministry of Science and Technology of Taiwan, China (Nos. MOST 104-2221-E-027-072-MY3 and MOST 106-2221-E-027-073).


1. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, Sci. Rep. 7, 40480 (2017).

2. Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, Opt. Express 25, 14760 (2017).

3. M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, and J. Xu, Opt. Express 25, 20829 (2017).

4. C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K. H. Park, K. T. Ho, M. S. Alouini, and B. S. Ooi, Opt. Express 24, 25502 (2016).

5. Y. Koike, and A. Inoue, J. Lightwave Technol. 34, 1551 (2016).

6. M. Matsuura, R. Furukawa, Y. Matsumoto, A. Inoue, and Y. Koike, Opt. Express 22, 6562 (2014).

7. J. Xu, B. Sun, W. Lyu, M. Kong, R. Sarwar, J. Han, W. Zhang, and N. Deng, Opt. Commun. 402, 260 (2017).

8. H. H. Lu, C. Y. Lin, T. C. Lu, C. A. Chu, H. H. Lin, B. R. Chen, C. J. Wu, and W. S. Tsai, Opt. Lett. 41, 2835 (2016).

9. A. S. Fletcher, S. A. Hamilton, and J. D. Moores, IEEE Commun. Mag. 53, 49 (2015).

10. E. K. Lau, and M. C. Wu, in Proceedings of International Topical Meeting on Microwave Photonics (2004), p.?142.

11. H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. K. Lu, and T. T. Shih, Opt. Lett. 41, 5023 (2016).

12. http://pof.comoss.com/datasheet/GI-POF-cable-Specifications.pdf

13. P.-C. Lai, and H. H. Lu, Opt. Eng. 43, 773 (2004).

14. S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, Opt. Lett. 41, 1805 (2016).

15. N. Kikuchi, R. Hiral, and T. Fukui, Optical Fiber Communication Conference (OFC) (2015), paper?W2?A.66.

16. P. Saboureau, J. P. Foing, and P. Schanne, IEEE J. Quantum Electron. 33, 1582 (1997).

17. B. M. Cochenour, L. J. Mullen, and A. E. Laux, IEEE J. Oceanic Eng. 33, 513 (2008).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387