2018-08-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.050007

Fabrication of electrically contacted plasmonic Schottky nanoantennas on silicon
Mohammad Alavirad1;2, Anthony Olivieri2, Langis Roy3, and Pierre Berini2;4;5
1 Department of Electronics, [Carleton University], 1 1 25 Colonel By Drive, Ottawa, Ontario K1 S 5B6, Canada
2 Centre for Research in Photonics, [University of Ottawa], 2 5 Templeton Street, Ottawa, Ontario K1N 6N5, Canada
3 Department of Electrical, Computer and Software Engineering, [University of Ontario Institute of Technology], 2000 Simcoe Street North Oshawa, Ontario L1H 7K4, Canada
4 School of Electrical Engineering and Computer Science, [University of Ottawa], 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
5 Department of Physics, [University of Ottawa], 15 0 Louis Pasteur, Ottawa, Ontario K1N 6N5 , Canada

Chin. Opt. Lett., 2018, 16(05): pp.050007

Keywords(OCIS Code): 240.6680  250.5403  

We fabricate Schottky contact photodetectors based on electrically contacted Au nanoantennas on p-Si for the plasmonic detection of sub-bandgap photons in the optical communications wavelength range. Based on a physical model for the internal photoemission of hot carriers, photons coupled onto the Au nanoantennas excite resonant plasmons, which decay into energetic “hot” holes emitted over the Schottky barrier at the Au/p-Si interface, resulting in a photocurrent. In our device, the active Schottky area consists of Au/p-Si contact and is very small, whereas the probing pad for external electrical interconnection is larger but consists of Au/Ti/p-Si contact having a comparatively higher Schottky barrier, thus producing negligible photo and dark currents. We describe fabrication that involves an electron-beam lithography step overlaid with photolithography. This highly compact component is very promising for applications in high-density Si photonics.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (666 KB)


Posted online:2018/4/28

Get Citation: Mohammad Alavirad, Anthony Olivieri, Langis Roy, and Pierre Berini, "Fabrication of electrically contacted plasmonic Schottky nanoantennas on silicon," Chin. Opt. Lett. 16(05), 050007(2018)



1. L. Novotny, and N. van Hulst, Nat. Photon. 5, 83 (2011).

2. P. Berini, Laser Photon. Rev. 8, 197 (2014).

3. D. Arble, N. Berkovitch, A. Nevet, A. Peer, S. Cohen, D. Ritter, and M. Orenstein, Opt. Express 19, 9807 (2011).

4. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, Nat. Photon. 3, 654 (2009).

5. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, Science 332, 702 (2011).

6. P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).

7. A. Ahmed, and R. Gordon, Nano Lett. 11, 1800 (2011).

8. A. Andryieuski, R. Malureanu, G. Biagi, T. Holmgaard, and A. Lavrinenko, Opt. Lett. 37, 1124 (2012).

9. M. Alavirad, S. Siadat Mousavi, L. Roy, and P. Berini, Opt. Express 21, 4328 (2013).

10. K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, Nat. Commun. 5, 3288 (2013).

11. S. Siadat Mousavi, A. St?hr, and P. Berini, Appl. Phys. Lett. 104, 143112 (2014).

12. S. Siadat Mousavi, P. Berini, and D. McNamara, Opt. Express 20, 18044 (2012).

13. P. Berini, Phys. Rev. B 63, 125417 (2001).

14. S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices , 3rd ed. (Wiley, 2006).

15. e_LiNE, Raith nanofabrication (Accessed 2015).

16. LabVIEW, National Instruments Corporation (Accessed 2016).

17. M. Alavirad, A. Olivieri, L. Roy, and P. Berini, Opt. Express 24, 22544 (2016).

18. J. H. Werner, Appl. Phys. A 47, 291 (1988).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387