2018-05-27 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.050006

Metasurfaces enabling structured light manipulation: advances and perspectives [Invited]
Jian Wang
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, [Huazhong University of Science and Technology], Wuhan 430074, China

Chin. Opt. Lett., 2018, 16(05): pp.050006

Keywords(OCIS Code): 160.3918  050.6624  080.4865  130.3120  

Metasurfaces and structured light have rapidly advanced over the past few years, from being paradigms to forming functional devices and tailoring special light beams for wide emerging applications. Here, we focus on harnessing metasurfaces for structured light manipulation. We review recent advances in shaping structured light by metasurfaces on different platforms (metal, silica, silicon, and fiber). Structured light manipulation based on plasmonic metasurfaces, reflection-enhanced plasmonic metasurfaces, metasurfaces on fiber facets, dielectric metasurfaces, and sub-wavelength structures on silicon are presented, showing impressive performance. Future trends, challenges, perspectives, and opportunities are also discussed.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1272 KB)


Posted online:2018/4/17

Get Citation: Jian Wang, "Metasurfaces enabling structured light manipulation: advances and perspectives [Invited]," Chin. Opt. Lett. 16(05), 050006(2018)

Note: This work was supported by the National Basic Research Program of China (973 Program) (No. 2014CB340004), the National Natural Science Foundation of China (NSFC) (Nos. 61761130082, 11774116, 11574001, and 11274131), the Royal Society-Newton Advanced Fellowship, the National Program for Support of Top-notch Young Professionals, and the Program for HUST Academic Frontier Youth Team.


1. S. Restuccia, D. Giovannini, G. Gibson, and M. Padgett, Opt. Express 24, 27127 (2016).

2. L. Zhu, and J. Wang, Sci. Rep. 4, 7441 (2014).

3. J. Du, and J. Wang, Opt. Lett. 40, 4827 (2015).

4. L. Zhu, and J. Wang, Opt. Lett. 40, 5463 (2015).

5. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).

6. A. Yao, and M. J. Padgett, Adv. Opt. Photon. 3, 161 (2011).

7. M. J. Padgett, Opt. Express 25, 11265 (2017).

8. Q. Zhang, Adv. Opt. Photon. 1, 1 (2009).

9. G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, Opt. Lett. 40, 1980 (2015).

10. Y. Zhao, and J. Wang, Opt. Lett. 40, 4843 (2015).

11. S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photon. Rev. 2, 299 (2008).

12. J. Geng, Adv. Opt. Photon. 3, 128 (2011).

13. J. Wang, Photon. Res. 4, B14 (2016).

14. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, Adv. Opt. Photon. 7, 66 (2015).

15. J. Wang, Chin. Opt. Lett. 15, 030005 (2017).

16. H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, J. Opt. 19, 013001 (2016).

17. R. Won, Nat. Photon. 11, 613 (2017).

18. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nature Photon. 6, 488 (2012).

19. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Science 340, 1545 (2013).

20. L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 25, 25637 (2017).

21. J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2018).

22. L. Fang, M. J. Padgett, and J. Wang, Laser Photon. Rev. 11, 1700183 (2017).

23. M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, Opt. Express 15, 7616 (2007).

24. M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993).

25. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, J. Opt. 13, 064001 (2011).

26. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, Opt. Commun. 112, 321 (1994).

27. A. Forbes, A. Dudley, and M. McLaren, Adv. Opt. Photon. 8, 200 (2016).

28. S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, Opt. Lett. 40, 4376 (2015).

29. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, Opt. Express 20, 9396 (2012).

30. X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).

31. S. Zheng, and J. Wang, Opt. Express 25, 18492 (2017).

32. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).

33. N. Meinzer, W. L. Barnes, and I. R. Hooper, Nat. Photon. 8, 889 (2014).

34. S. Jahani, and Z. Jacob, Nat. Nanotech. 11, 23 (2016).

35. W. Cao, X. Yang, and J. Gao, Sci. Rep. 7, 8841 (2017).

36. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Nat. Mater. 11, 426 (2012).

37. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and J. Li, Nat. Commun. 4, 2808 (2013).

38. E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. Boyd, Light Sci. App. 3, e167 (2014).

39. N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, Nat. Photon. 9, 180 (2015).

40. M. Kang, J. Chen, X.-L. Wang, and H.-T. Wang, J. Opt. Soc. Am. B 29, 572 (2012).

41. Z. H. Jiang, S. Yun, L. Lin, J. A. Bossard, D. H. Werner, and T. S. Mayer, Sci. Rep. 3, 1571 (2013).

42. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Nano Lett. 14, 1394 (2014).

43. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Science 345, 298 (2014).

44. N. Lawrence, J. Trevino, and L. Dal Negro, J. Appl. Phys. 111, 113101 (2012).

45. D. Lin, M. Melli, E. Poliakov, P. S. Hilaire, S. Dhuey, C. Peroz, S. Cabrini, M. Brongersma, and M. Klug, Sci. Rep. 7, 2286 (2017).

46. Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, Laser Photon. Rev. 9, 412 (2015).

47. P. P. Lyer, M. Pendharkar, C. J. Palmstr?m, and J. A. Schuller, Nat. Commun. 8, 472 (2017).

48. J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, Sci. Rep. 7, 41893 (2017).

49. P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, Opt. Express 22, 26212 (2014).

50. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, Optica 4, 139 (2017).

51. J. Scheuer, Nanophotonics 6, 137 (2017).

52. H.-H. Hsiao, C. H. Chu, and D. P. Tsai, Small Meth. 1, 1600064 (2017).

53. Y. Zhang, W. Liu, J. Gao, and X. Yang, Adv. Opt. Mat. 6, 201701228 (2018).

54. Z. Zhao, J. Wang, S. Li, and A. E. Willner, Opt. Lett. 38, 932 (2013).

55. J. Du, and J. Wang, Sci. Rep. 5, 9662 (2015).

56. J. Du, and J. Wang, Opt. Lett. 42, 5054 (2017).

57. N. I. Zheludev, Opt. Photon. News 22, 30 (2011).

58. N. I. Zheludev, and Y. S. Kivshar, Nature Mater. 11, 917 (2012).

59. A. M. Urbas, Z. Jacob, L. Dal Negro, N. Engheta, A. D. Boardman, P. Egan, A. B. Khanikaev, V. Menon, M. Ferrera, N. Kinsey, C. DeVault, J. Kim, V. Shalaev, A. Boltasseva, J. Valentine, C. Pfeiffer, A. Grbic, E. Narimanov, L. Zhu, S. Fan, A. Alù, E. Poutrina, N. M. Litchinitser, M. A. Noginov, K. F. MacDonald, E. Plum, X. Liu, P. F. Nealy, C. R. Kagan, C. B. Murray, D. A. Pawlak, I. I. Smolyaninov, V. N. Smolyaninova, and D. Chanda, J. Opt. 18, 093005 (2016).

60. R. F. Waters, P. A. Hobson, K. F. MacDonald, and N. I. Zheludev, Appl. Phys. Lett. 107, 081102 (2015).

61. L. Xu, D. Chen, C. A. Curwen, M. Memarian, J. L. Reno, T. Itoh, and B. S. Williams, Optica 4, 468 (2017).

62. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, Nano Lett. 14, 6526 (2014).

63. J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, ACS Nano 9, 4308 (2015).

64. J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nat. Nanotech. 8, 252 (2013).

65. Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, Nat. Photon. 10, 60 (2016).

66. N. I. Zheludev, and E. Plum, Nat. Nanotech. 11, 16 (2016).

67. L. Li, T. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Li, M. Jiang, C. Qiu, and S. Zhang, Nat. Commun. 8, 197 (2017).

68. O. R. Bilal, A. Foehr, and C. Daraio, Adv. Mater. 29, 1700628 (2017).

69. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).

70. O. Hess, and K. L. Tsakmakidis, Science 339, 654 (2013).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387