2018-08-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.050005


Optical cavity resonance with magnetized plasma
Dongyang Wang1;2, Jiaguang Han2, and Shuang Zhang1;2
1 School of Physics &
Astronomy, University of Birmingham, Birmingham B1 5 2TT, UK
2 Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, [Tianjin University], Tianjin 300072 , China

Chin. Opt. Lett., 2018, 16(05): pp.050005

DOI:10.3788/COL201816.050005
Topic:General
Keywords(OCIS Code): 350.4238  350.5400  160.3918  

Abstract
Indefinite media with mixed signs of dielectric tensor elements possess unbounded equifrequency surfaces that have been utilized for diverse applications such as superimaging, enhanced spontaneous emission, and thermal radiation. One particularly interesting application of indefinite media is an optical cavity supporting anomalous scaling laws. In this Letter, we show that by replacing an indefinite medium with magnetized plasma one can construct a tunable indefinite cavity. The magnetized plasma model is based on realistic semiconductor material properties at terahertz frequencies that show hyperbolic dispersion in a certain frequency regime. The hyperbolic dispersion features are utilized for the design of optical cavities. Dramatically different sizes of cavities can support the same resonance mode at the same frequency. For a cavity of fixed size, the anomalous scaling law between the resonance frequency and mode number is confirmed. The resonance frequency can be strongly modulated by changing the strength of the applied magnetic field. The proposed model provides active controllability of terahertz resonances on the deep subwavelength scale with realistic semiconductor materials.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (368 KB)

Share:


Received:2018/2/2
Accepted:2018/3/16
Posted online:2018/4/24

Get Citation: Dongyang Wang, Jiaguang Han, and Shuang Zhang, "Optical cavity resonance with magnetized plasma," Chin. Opt. Lett. 16(05), 050005(2018)

Note: This work was supported by the ERC Consolidator Grant (TOPOLOGICAL) and the Royal Society and the Wolfson Foundation.



References

1. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, Rev. Mod. Phys. 71, 1591 (1999).

2. M. Soljacic, and J. D. Joannopoulos, Nat. Mater. 3, 211 (2004).

3. H. Mabuchi, and A. C. Doherty, Science 298, 1372 (2002).

4. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).

5. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Kn?dl, M. Miller, and R. J?ger, Nature 419, 699 (2002).

6. A. Douglas, Phys. Scr. T 90, 248 (2001).

7. T. J. Kippenberg, and K. J. Vahala, Science 321, 1172 (2008).

8. K. J. Vahala, Nature 424, 839 (2003).

9. H. Hodaei, A. U. Hassan, S. Wittek, H. G. Gracia, R. E. Ganainy, D. N. Christodoulides, and M. Khajavikhan, Nature 548, 187 (2017).

10. W. Chen, ?. K. ?zdemir, G. Zhao, J. Wiersig, and L. Yang, Nature 548, 192 (2017).

11. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 54, 7837 (1996).

12. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).

13. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).

14. C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, Nature 499, 188 (2013).

15. D. R. Smith, and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).

16. D. R. Smith, P. Kolinko, and D. Schurig, J. Opt. Soc. Am. B 21, 1032 (2004).

17. L. Ferrari, D. Lu, D. Lepage, and Z. Liu, Opt. Express 22, 004301 (2014).

18. Y. Guo, and Z. Jacob, Opt. Express 21, 015014 (2013).

19. J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, PNAS 108, 28 (2011).

20. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, Nat. Photonics 6, 450 (2012).

21. S. Zhang, Y. Xiong, G. Bartal, X. Yin, and X. Zhang, Phys. Rev. Lett. 106, 243901 (2011).

22. B. Yang, M. Lawrence, W. Gao, Q. Guo, and S. Zhang, Sci. Rep. 6, 21461 (2016).

23. W. Gao, B. Yang, M. Lawrence, F. Fang, B. Beri, and S. Zhang, Nat. Commun. 7, 12435 (2016).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387