2018-08-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.050004


Mid-infrared superabsorbers based on quasi-periodic moiré metasurfaces
Yaoran Liu, Zilong Wu, Eric H. Hill, and Yuebing Zheng
Department of Mechanical Engineering and Texas Materials Institute, [The University of Texas at Austin], Austin, Texas 78712, USA

Chin. Opt. Lett., 2018, 16(05): pp.050004

DOI:10.3788/COL201816.050004
Topic:General
Keywords(OCIS Code): 160.3918  120.4120  120.2440  120.2230  

Abstract
We report on mid-infrared superabsorbers based on quasi-periodic moiré metasurfaces in metal-insulator-metal form. By varying the spacer thickness, moiré rotation angle, and filling factor of the superabsorbers, we can tune narrowband or broadband absorption in a systematic way. With their high tunability of near-unity absorption and simple fabrication, in combination with decoupled mode theory for an efficient design, moiré superabsorbers are well-suited for a wide range of applications in sensing, imaging, and communication.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (804 KB)

Share:


Received:2017/12/25
Accepted:2018/3/16
Posted online:2018/4/24

Get Citation: Yaoran Liu, Zilong Wu, Eric H. Hill, and Yuebing Zheng, "Mid-infrared superabsorbers based on quasi-periodic moiré metasurfaces," Chin. Opt. Lett. 16(05), 050004(2018)

Note: We acknowledge the financial support of the Office of Naval Research Young Investigator Program (No. N00014-17-1-2424). We thank the Texas Advanced Computing Center at The University of Texas at Austin for providing high-performance computing resources that contributed to the numerical simulations. URL: http://www.tacc.utexas.edu.



References

1. S. Law, V. Podolskiy, and D. Wasserman, Nanophotonics Berlin 2, 103 (2013).

2. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).

3. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, Opt. Express 18, A620 (2010).

4. Y. Jin, Adv. Mater. 24, 5153 (2012).

5. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, Nat. Photon. 10, 393 (2016).

6. L. Zhou, S. Zhuang, C. He, Y. Tan, Z. Wang, and J. Zhu, Nano Energy 32, 195 (2017).

7. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, ACS Nano 5, 4641 (2011).

8. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, Nano Lett. 14, 6526 (2014).

9. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, Opt. Express 19, 15221 (2011).

10. Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, ACS Photon. 3, 2096 (2016).

11. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).

12. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).

13. K. Chen, R. Adato, and H. Altug, ACS Nano 6, 7998 (2012).

14. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, Opt. Express 20, 10376 (2012).

15. W. Ma, Y. Z. Wen, and X. M. Yu, Opt. Express 21, 30724 (2013).

16. Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, Appl. Phys. Lett. 99, 253101 (2011).

17. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, ACS Nano 8, 1517 (2014).

18. Y. X. Cui, K. H. Fung, J. Xu, H. J. Ma, Y. Jin, S. L. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).

19. L. Zhou, Y. L. Tan, D. X. Ji, B. Zhu, P. Zhang, J. Xu, Q. Q. Gan, Z. F. Yu, and J. Zhu, Sci. Adv. 2, e1501227 (2016).

20. J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno, Phys. Rev. Lett. 99, (2007).

21. E. R. Martins, J. T. Li, Y. K. Liu, V. Depauw, Z. X. Chen, J. Y. Zhou, and T. F. Krauss, Nat. Commun. 4, 2665 (2013).

22. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, Nat. Photon. 4, 165 (2010).

23. R. W. Godby, M. Schluter, and L. J. Sham, Phys. Rev. B 37, 10159 (1988).

24. M. Dulea, M. Johansson, and R. Riklund, Phys. Rev. B 45, 105 (1992).

25. K. Chen, B. B. Rajeeva, Z. L. Wu, M. Rukavina, T. D. Dao, S. Ishii, M. Aono, T. Nagao, and Y. B. Zheng, ACS Nano 9, 6031 (2015).

26. Z. L. Wu, K. Chen, R. Menz, T. Nagao, and Y. B. Zheng, Nanoscale 7, 20391 (2015).

27. Z. L. Wu, W. Li, M. N. Yogeesh, S. Y. Jung, A. L. Lee, K. McNicholas, A. Briggs, S. R. Bank, M. A. Belkin, D. Akinwande, and Y. B. Zheng, Adv. Opt. Mater. 4, 2035 (2016).

28. S. M. Lubin, W. Zhou, A. J. Hryn, M. D. Huntington, and T. W. Odom, Nano Lett. 12, 4948 (2012).

29. S. M. Lubin, A. J. Hryn, M. D. Huntington, C. J. Engel, and T. W. Odom, ACS Nano 7, 11035 (2013).

30. G. T. de Laissardiere, D. Mayou, and L. Magaud, Nano Lett. 10, 804 (2010).

31. H. T. Chen, Opt Express 20, 7165 (2012).

32. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, ACS Photon. 2, 964 (2015).

33. T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, ACS Photon. 3, 1271 (2016).

34. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, Phys. Rev. B. 71, (2005).

35. T. H. Le, and T. Tanaka, ACS Nano 11, 9780 (2017).

36. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107, 045901 (2011).

37. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, ACS Photon. 2, 216 (2015).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387