2018-08-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 16 , 2018    10.3788/COL201816.043201


Octave-spanning visible supercontinuum generation from an aluminum nitride single crystal pumped by a 355 nm nanosecond pulse
Chunbo Li1;2;3, Xikui Ren1;2, Honglei Wu2, Ruisheng Zheng2, Junqing Zhao4, Deqin Ouyang3, Chenlin Du1;2;3, Peiguang Yan1;2, and Shuangchen Ruan1;2;3
1 Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, [Shenzhen University], Shenzhen 51 8060, China
2 Sino-German College for Intelligent Manufacturing, [Shenzhen Technology University], Shenzhen 518060, China
3 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, [Shenzhen University], Shenzhen 518060, China
4 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, [Jiangsu Normal University], Xuzhou 221116, China

Chin. Opt. Lett., 2018, 16(04): pp.043201

DOI:10.3788/COL201816.043201
Topic:Ultrafast optics
Keywords(OCIS Code): 320.6629  190.2640  190.4720  190.4380  

Abstract
Supercontinuum generation (SC) of more than one octave spectrum spanning covering from 400 nm to 820 nm was achieved by pumping a piece of aluminum nitride (AIN) single crystal using a nanosecond 355 nm ultraviolet laser. The AlN with a thickness of ~0.8 mm was grown by an optimized physical vapor transport technique and polished with solidification technology. Compared to previously reported ones, the achieved visible SC exhibited the broadest spectrum spanning from bulk materials pumped by a nanosecond pulse laser. The visible supercontinuum in AlN presents new opportunities for bulk material-based white light SC and may find more potential applications beyond typical applications in integrated semiconductive photoelectronic devices.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (601 KB)

Share:


Received:2017/11/29
Accepted:2018/2/28
Posted online:2018/3/28

Get Citation: Chunbo Li, Xikui Ren, Honglei Wu, Ruisheng Zheng, Junqing Zhao, Deqin Ouyang, Chenlin Du, Peiguang Yan, and Shuangchen Ruan, "Octave-spanning visible supercontinuum generation from an aluminum nitride single crystal pumped by a 355 nm nanosecond pulse," Chin. Opt. Lett. 16(04), 043201(2018)

Note: This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 61575129 and 11447029) and the Science & Technology Innovation Committee Foundation of Shenzhen (No. JCYJ20160328144942069).



References

1. X. Jiang, N. Joly, M. Finger, F. Babic, G. Wong, J. Travers, and P. Russell, Nat. Photon. 9, 133 (2015).

2. F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).

3. C. Petersen, U. M?ller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photon. 8, 830 (2014).

4. H. Liang, P. Krogen, R. Grynko, O. Novak, C. Chang, G. Stein, D. Weerawarne, B. Shim, F. Kartner, and K. Hong, Opt. Lett. 40, 1069 (2015).

5. A. Lanin, A. Voronin, E. Stepanov, A. Fedotov, and A. Zheltikov, Opt. Lett. 40, 974 (2015).

6. S. Vyas, T. Tanabe, M. Tiwari, and G. Singh, Chin. Opt. Lett. 14, 123201 (2016).

7. M. Klimczak, B. Siwicki, A. Heidt, and R. Buczynsk, Photon. Res. 5, 710 (2017).

8. E. Serebryannikov, and A. Zheltikov, Opt. Commun. 274, 433 (2007).

9. J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).

10. S. Coen, A. Chau, R. Leonhardt, J. Harvey, J. Knight, W. Wadsworth, and P. Russell, J. Opt. Soc. Am. B 19, 753 (2002).

11. P. Yan, J. Shu, S. Ruan, J. Zhao, J. Zhao, C. Du, C. Guo, H. Wei, and J. Luo, Opt. Express 19, 4985 (2011).

12. S. Coen, A. Chau, R. Leonhardt, J. Harvey, J. Knight, W. Wadsworth, and P. Russell, Opt. Lett. 26, 1356 (2001).

13. B. Yan, J. Yuan, X. Sang, K. Wang, and C. Yu, Chin. Opt. Lett. 14, 050603 (2016).

14. Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, Photon. Res. 4, 135 (2016).

15. P. S. Maji, and R. Das, Chin. Opt. Lett. 15, 070606 (2017).

16. J. Dharmadhikari, R. Deshpande, A. Nath, K. Dota, D. Mathur, and A. Dharmadhikari, Appl. Phys. B 117, 471 (2014).

17. C. Lu, L. Yang, M. Zhi, A. Sokolov, S. Yang, C. Hsu, and A. Kung, Opt. Express 22, 4075 (2014).

18. T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, Opt. Express 23, 4125 (2015).

19. B. Zhou, H. Guo, and M. Bache, Opt. Express 23, 6924 (2015).

20. M. Hemmer, M. Baudisch, A. Thai, A. Couairon, and J. Biegert, Opt. Express 21, 28095 (2013).

21. T. Karda?, B. Ratajska-Gadomska, W. Gadomski, A. Lapini, and R. Righini, Opt. Express 21, 24201 (2013).

22. H. Rinnert, S. Hussain, V. Brien, J. Legrand, and P. Pigeat, J. Lumin. 132, 2367 (2012).

23. M. Soares, J. Leit?o, M. Silva, J. González, F. Matinaga, K. Lorenz, E. Alves, M. Peres, and T. Monteiro, Opt. Mater. 33, 1055 (2011).

24. C. Rodrigues, á. Vasconcellos, and R. Luzzi, Eur. Phys. J. B 72, 67 (2009).

25. S. Bakalov, A. Szekeres, S. Grigorescu, E. Axente, G. Socol, and I. Mihalescu, Appl. Phys. A 85, 99 (2006).

26. V. Darakchieva, P. Paskov, M. Schubert, T. Paskova, B. Monemar, S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, Phys. Status Solidi C 7, 2614 (2003).

27. Y. Cho, B. Dierre, N. Fukata, N. Hirosaki, K. Marumoto, D. Son, K. Takahashi, T. Takeda, and T. Sekiguchi, Scr. Mater. 110, 109 (2016).

28. S. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, Appl. Phys. Lett. 106, 131104 (2015).

29. L. Trinkler, and B. Berzina, Phys. Status Solidi B 251, 542 (2014).

30. A. Vokhmintsev, I. Weinstein, and D. M. Spiridonov, J. Lumin. 132, 2109 (2012).

31. T. Schulz, M. Albrecht, K. Irmscher, C. Hartmann, J. Wollweber, and R. Fornari, Phys. Status Solidi B 248, 1513 (2011).

32. L. Bergman, and J. McHale, Handbook of Luminescent Semiconductor Materials (CRC Press, 2012), Chap.?2.

33. W. Pernice, C. Xiong, C. Schuck, and H. Tang, Appl. Phys. Lett. 100, 223501 (2012).

34. M. Larciprete, A. Bosco, A. Belardini, R. Voti, G. Leahu, C. Sibilia, E. Fazio, R. Ostuni, M. Bertolotti, A. Passaseo, B. Potì, and Z. Prete, J. Appl. Phys. 100, 023507 (2006).

35. H. Jung, C. Xiong, K. Fong, X. Zhang, and H. Tang, Opt. Lett. 38, 2810 (2013).

36. M. Kuballa, J. Hayesa, Y. Shi, J. Edgarb, A. Prinsc, N. Udenc, and D. Dunstan, J. Cryst. Growth 231, 391 (2001).

37. J. Swiderski, Prog. Quantum Electron. 38, 189 (2014).

38. J. Gersten, R. Alfano, and M. Belic, Phys. Rev. A 21, 1222 (1980).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387