2018-06-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 16 , 2018    10.3788/COL201816.041401


Numerical model and experimental demonstration of high precision ablation of pulse CO2 laser
Ting He1;2, Chaoyang Wei1, Zhigang Jiang1, Zhen Yu1;2, Zhen Cao1;2, and Jianda Shao1
1 [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences], Shanghai 201 800, China
2 [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2018, 16(04): pp.041401

DOI:10.3788/COL201816.041401
Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3390  140.3470  220.5450  140.3538  160.2750  

Abstract
To reveal the physical mechanism of laser ablation and establish the prediction model for figuring the surface of fused silica, a multi-physical transient numerical model coupled with heat transfer and fluid flow was developed under pulsed CO2 laser irradiation. The model employed various heat transfer and hydrodynamic boundary and thermomechanical properties for assisting the understanding of the contributions of Marangoni convention, gravitational force, vaporization recoil pressure, and capillary force in the process of laser ablation and better prediction of laser processing. Simulation results indicated that the vaporization recoil pressure dominated the formation of the final ablation profile. The ablation depth increased exponentially with pulse duration and linearly with laser energy after homogenous evaporation. The model was validated by experimental data of pulse CO2 laser ablation of fused silica. To further investigate laser beam figuring, local ablation by varying the overlap rate and laser energy was conducted, achieving down to 4 nm homogenous ablation depth.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (756 KB)

Share:


Received:2017/11/2
Accepted:2018/2/9
Posted online:2018/3/30

Get Citation: Ting He, Chaoyang Wei, Zhigang Jiang, Zhen Yu, Zhen Cao, and Jianda Shao, "Numerical model and experimental demonstration of high precision ablation of pulse CO2 laser," Chin. Opt. Lett. 16(04), 041401(2018)

Note: This work was supported by the National Basic Research Program (No. 2016YFB1102704) and the Youth Innovation Promotion Association, CAS.



References

1. W. Qu, H. Gu, and Q. Tan, Chin. Opt. Lett. 14, 031404 (2016).

2. R. Dubey, B. Vosoughi Lahijani, M. H?yrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, Photon. Res. 5, 494 (2017).

3. W. Liu, L. Dong, P. Yang, and B. Xu, Chin. Opt. Lett. 14, 020101 (2016).

4. P. A. Temple, W. H. Lowdermilk, and D. Milam, Appl. Opt. 21, 3249 (1982).

5. P. Cormont, A. Bourgeade, S. Cavaro, T. Donval, T. Doualle, G. Gaborit, L. Gallais, L. Lamaignère, and J.-L. Rullier, Adv. Eng. Mater. 17, 253 (2015).

6. M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, Adv. Eng. Mater. 17, 247 (2015).

7. A. Richmann, E. Willenborg, and K. Wissenbach, in Optical Fabrication and Testing (2010), paper?OTuC2.

8. S. Heidrich, A. Richmann, P. Schmitz, E. Willenborg, K. Wissenbach, P. Loosen, and R. Poprawe, Opt. Lasers Eng. 59, 34 (2014).

9. S. Heidrich, A. Richmann, and E. Willenborg, Proc. SPIE 8433, 84330P (2012).

10. C. Weingarten, A. Schmickler, E. Willenborg, K. Wissenbach, and R. Poprawe, J. Laser Appl. 29, 011702 (2017).

11. S. Heidrich, E. Willenborg, and A. Richmann, Phys. Procedia 12, 519 (2011).

12. S. Heidrich, E. Willenborg, C. Weingarten, and R. Poprawe, in Optical Fabrication and Testing (2014), paper?OTu1B.4.

13. L. L. Taylor, J. Qiao, and J. Qiao, Proc. SPIE 9740, 97400L (2016).

14. C. Weingarten, E. Uluz, A. Schmickler, K. Braun, E. Willenborg, A. Temmler, and S. Heidrich, Appl. Opt. 56, 777 (2017).

15. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, J. Appl. Phys. 106, 103106 (2009).

16. R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, and J. Mauro, J. Am. Ceramic Soc. 96, 137 (2013).

17. T. Doualle, L. Gallais, P. Cormont, D. Hébert, P. Combis, and J. L. Rullier, J. Appl. Phys. 119, 113106 (2016).

18. K. M. Nowak, H. J. Baker, and D. R. Hall, Appl. Opt. 54, 8653 (2015).

19. P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, Appl. Phys. Lett. 101, 211908 (2012).

20. T. He, J. Shao, C. Wei, Z. Jiang, and J. Zhao, in Pacific Rim Laser Damage?2017: Optical Materials for High Power Lasers (2017), p.?6.

21. C. Zhang, J. Zhou, and H. Shen, J. Manuf. Sci. Eng. 139, 041019 (2017).

22. S. Sharma, Y. Pachaury, S. N. Akhtar, and J. Ramkumar, in Proceedings of the 2015 COMSOL Conference (2015), p.?29.

23. K.-S. Chen, T.-S. Yang, R.-C. Hong, T.-C. Chiu, A. C. Wen, C.-H. Li, C.-J. Huang, K.-T. Chen, and M.-C. Lin, in 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) (2016), p.?1.


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387