2018-09-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 16 , 2018    10.3788/COL201816.040605


Investigation on an all-optical intensity modulator based on an optical microfiber coupler
Yang Yu1;2, Qiang Bian1, Nan Zhang3, Yang Lu1, Xueliang Zhang1, and Junbo Yang2
1 College of Meteorology and Oceanology, [National University of Defense Technology], Changsha 41 0073, China
2 College of Liberal Arts and Sciences, [National University of Defense Technology], Changsha 410073, China
3 The Medical Engineering &
Maintenance Center, [Chinese PLA General Hospital], Beijing 100853 , China

Chin. Opt. Lett., 2018, 16(04): pp.040605

DOI:10.3788/COL201816.040605
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 230.4000  060.2370  

Abstract
An all-optical intensity modulator based on an optical microfiber coupler (OMC) is presented. The modulator works at 1550 nm wavelength and is modulated directly by heating the coupling region with 980 nm pump light injected through the coupling port of the OMC. The OMC is controlled to have at least a 30 mm long coupling region with diameter smaller than 8 μm, and the uniform waist region diameter is about 3 μm. This is helpful to ensure the optical modulation function based on the light induced thermal effect in the coupling region, while pump light is injected. The modulation response is measured to show good linearity when the 980 nm pump light has a lower intensity (with power below 2.5 mW), which proves that the OMC acts as an all-optical modulator. The bandwidth of the modulator can be at 0.2–50 kHz with the average power of the intensity-modulated pump light about 2 mW, which can be further improved by optimizing the design of the coupler. The demonstrated modulator may have potential value for the application in an all-optical integration system.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (572 KB)

Share:


Received:2017/12/9
Accepted:2018/2/9
Posted online:2018/4/3

Get Citation: Yang Yu, Qiang Bian, Nan Zhang, Yang Lu, Xueliang Zhang, and Junbo Yang, "Investigation on an all-optical intensity modulator based on an optical microfiber coupler," Chin. Opt. Lett. 16(04), 040605(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 61705262) and the Clinical Support Foundation of PLA General Hospital (No. 2015FC-CXYY-1007).



References

1. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).

2. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, J. Lightwave Technol. 16, 1013 (1998).

3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, Nature 427, 615 (2004).

4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).

5. D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, Appl. Phys. Lett. 91, 161112 (2007).

6. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, Nat. Mater. 5, 703 (2006).

7. D. Pacifici, H. J. Lezec, and H. A. Atwater, Nat. Photon. 1, 402 (2007).

8. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, Nat. Photon. 4, 477 (2010).

9. L. Tong, F. Zi, X. Guo, and J. Lou, Opt. Commun. 285, 4641 (2012).

10. M. Liu, A. Luo, W. Xu, and Z. Luo, Chin. Opt. Lett. 16, 020008 (2018).

11. A. Sulaiman, S. W. Harun, and H. Ahmad, Chin. Opt. Lett. 12, 021403 (2014).

12. Z. Y. Xu, Y. H. Li, and L. J. Wang, Photon. Res. 4, 45 (2016).

13. Y. Wu, B. C. Yao, Q. Y. Feng, X. L. Cao, X. Y. Zhou, Y. J. Rao, Y. Gong, W. L. Zhang, Z. G. Wang, Y. F. Chen, and K. S. Chiang, Photon. Res. 3, A64 (2015).

14. S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, Opt. Express 23, 10764 (2015).

15. X. T. Gan, C. Y. Zhao, Y. D. Wang, D. Mao, L. Fang, L. Han, and J. L. Zhao, Optica 2, 468 (2015).

16. Y. Meng, L. Deng, Z. Liu, H. Xiao, X. Guo, M. Liao, A. Guo, T. Ying, and Y. Tian, Opt. Express 25, 18451 (2017).

17. R. Wang, D. Li, H. Wu, M. Jiang, Z. Sun, Y. Tian, J. Bai, and Z. Ren, IEEE Photon. J. 99 (2017).

18. Z. Song, Y. Yu, X. Zhang, Z. Wei, and Z. Meng, Chin. Opt. Lett. 12, 090606 (2014).

19. Y. Jung, G. Brambilla, and D. J. Richardson, Opt Express 17, 5273 (2009).

20. M. Ding, P. Wang, and G. Brambilla, Photon. Technol. Lett. 24, 1209 (2012).

21. M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andrés, IEEE Sens. J. 17, 333 (2017).

22. S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, IEEE Photon. J. 8, 6804209 (2016).

23. L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, IEEE Photon. J. 8, 6805407 (2016).

24. T. A. Birks, and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).

25. L. Tong, Opt. Express 12, 1025 (2004).

26. Y. Yu, X. Zhang, Z. Song, Z. Wei, and Z. Meng, Chin. Opt. Lett. 12, 012301 (2014).

27. Y. Yu, Q. Bian, and X. Zhang, Chin. J. Lasers 45, 0606003 (2018).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387