2018-04-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 16 , 2018    10.3788/COL201816.040602

Simultaneous measurement of axial strain and temperature based on twisted fiber structure
Xinyue Jiang1, Ping Lu1, Yuan Sun1, Hao Liao1, Deming Liu1, Jiangshan Zhang2, and Hui Liao3
1 School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, [Huazhong University of Science and Technology], Wuhan 430074, China
2 Department of Electronics and Information Engineering, [Huazhong University of Science and Technology], Wuhan 430074, China
3 [Enviromental Protection Science and Technology Co., Ltd.], Wuhan 43 0070, China

Chin. Opt. Lett., 2018, 16(04): pp.040602

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2370  060.2430  120.3180  

In this Letter, an alternative solution is proposed and demonstrated for simultaneous measurement of axial strain and temperature. This sensor consists of two twisted points on a commercial single mode fiber introduced by flame-heated and rotation treatment. The fabrication process modifies the geometrical configuration and refractive index of the fiber. Different cladding modes are excited at the first twisted point, and part of them are coupled back to the fiber core at the second twisted point. Experimental results show distinct sensitivities of 34.9 pm/με with 49.23 pm/°C and ?36.19 pm/με with 62.99 pm/°C for the two selected destructive interference wavelengths.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (755 KB)


Posted online:2018/3/28

Get Citation: Xinyue Jiang, Ping Lu, Yuan Sun, Hao Liao, Deming Liu, Jiangshan Zhang, and Hui Liao, "Simultaneous measurement of axial strain and temperature based on twisted fiber structure," Chin. Opt. Lett. 16(04), 040602(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 61775070 and 61275083) and the Fundamental Research Funds for the Central Universities (No. 2017KFYXJJ032).


1. M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, IEEE Sens. J. 16, 6192 (2016).

2. R. M. André, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. B. Cordeiro, and O. Fraz?o, IEEE Photon. Technol. Lett. 25, 155 (2013).

3. X. Zhang, H. Shao, H. Pan, Y. Yang, H. Bai, F. Pang, and T. Wang, Chin. Opt. Lett. 15, 070601 (2017).

4. X. Shu, D. Zhao, L. Zhang, and I. Bennion, Appl. Opt. 43, 2006 (2004).

5. Y. Ping, L. Xiao, D. N. Wang, and W. Jin, Opt. Lett. 31, 3414 (2006).

6. X. Yan, H. Fu, H. Li, and X. Qiao, Chin. Opt. Lett. 14, 030603 (2016).

7. C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, Photon. Res. 5, 129 (2017).

8. B. Dong, J. Hao, C.-Y. Liaw, B. Lin, and S. C. Tjin, Appl. Opt., 49, 6232 (2010).

9. O. Fraz?o, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, IEEE Photon. Technol. Lett. 18, 2407 (2006).

10. J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, IEEE Photon. Technol. 26, 309 (2014).

11. Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and J. Zhang, IEEE Sens. J. 17, 3045 (2017).

12. A. W. Snyder, J. Opt. Soc. Am. 62, 1267 (1972).

13. X. Shu, L. Zhang, and I. Bennion, J. Lightwave Technol. 20, 255 (2002).

14. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, Opt. Express. 16, 11369 (2008).

15. Z. Zhang, W. Shi, K. Gao, and Z. Fang, Chin. Opt. Lett. 2, 565 (2004).

16. J. Zhou, Y. Wang, C. Liao, G. Yin, X. Xu, K. Yang, X. Zhong, Q. Wang, and Z. Li, IEEE Photon. Technol. Lett. 26, 508 (2014).

17. P. Lu, and Q. Chen, IEEE Photon. J. 2, 942 (2010).

18. W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, Opt. Eng. 36, 2272 (1997).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387