2018-06-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 16 , 2018    10.3788/COL201816.040202


Angular momentum distribution in strong-field frustrated tunneling ionization
Jintai Liang1, Ruozhou Zhang1, Xiaomeng Ma1, Yueming Zhou1, and Peixiang Lu1;2
1 School of Physics, [Huazhong University of Science and Technology], Wuhan 430074, China
2 Laboratory of Optical Information Technology, [Wuhan Institute of Technology], Wuhan 4302 05, China

Chin. Opt. Lett., 2018, 16(04): pp.040202

DOI:10.3788/COL201816.040202
Topic:Atomic and molecular physics
Keywords(OCIS Code): 020.2649  020.4180  320.7110  320.7120  

Abstract
Using the classical-trajectory Monte Carlo model, we have theoretically studied the angular momentum distribution of frustrated tunneling ionization (FTI) of atoms in strong laser fields. Our results show that the angular momentum distribution of the FTI events exhibits a double-hump structure. With this classical model, we back traced the tunneling coordinates, i.e., the tunneling time and initial transverse momentum at tunneling ionization. It is shown that for the events tunneling ionized at the rising edge of the electric field, the final angular momentum exhibits a strong dependence on the initial transverse momentum at tunneling. While for the events ionized at the falling edge, there is a relatively harder recollision between the returning electron and the parent ion, leading to the angular momentum losing the correlation with the initial transverse momentum. Our study suggests that the angular momentum of the FTI events could be manipulated by controlling the initial coordinates of the tunneling ionization.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (477 KB)

Share:


Received:2018/1/7
Accepted:2018/2/11
Posted online:2018/3/23

Get Citation: Jintai Liang, Ruozhou Zhang, Xiaomeng Ma, Yueming Zhou, and Peixiang Lu, "Angular momentum distribution in strong-field frustrated tunneling ionization," Chin. Opt. Lett. 16(04), 040202(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11622431 and 61405064).



References

1. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).

2. F. Krausz, and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

3. C. Zhai, X. Zhang, X. Zhu, L. He, Y. Zhang, B. Wang, Q. Zhang, P. Lan, and P. Lu, Opt. Express 26, 2775 (2018).

4. L. Xi, X. Zhu, P. Lan, X. Zhang, D. Wang, Q. Zhang, and P. Lu, Phys. Rev. A 95, 063419 (2017).

5. J. Tan, Y. Li, Y. Zhou, M. He, Y. Chen, M. Li, and P. Lu, Opt. Quantum Electron. 50, 57 (2018).

6. G. G. Paulus, W. Nicklich, H. Xu, P. Lambropoulos, and H. Walther, Phys. Rev. Lett. 72, 2851 (1994).

7. M. He, Y. Zhou, Y. Li, M. Li, and P. Lu, Opt. Quantum Electron. 49, 232 (2017).

8. M. He, Y. Li, Y. Zhou, M. Li, and P. Lu, Phys. Rev. A 93, 033406 (2016).

9. B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett. 73, 1227 (1994).

10. R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schr?ter, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, K. Hoffmann, and W. Sandner, Phys. Rev. Lett. 84, 447 (2000).

11. T. Weber, M. Weckenbrock, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, F. Afaneh, G. Urbasch, M. Vollmer, H. Giessen, and R. D?rner, Phys. Rev. Lett. 84, 443 (2000).

12. W. Becker, X. Liu, P. J. Ho, and J. H. Eberly, Rev. Mod. Phys. 84, 1011 (2012).

13. T. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. D?rner, Nature 405, 658 (2000).

14. X. Ma, Y. Zhou, and P. Lu, Phys. Rev. A 93, 013425 (2016).

15. D. Ye, M. Li, L. Fu, J. Liu, Q. Gong, Y. Liu, and J. Ullrich, Phys. Rev. Lett. 115, 123001 (2015).

16. Y. Zhou, C. Huang, Q. Liao, and P. Lu, Phys. Rev. Lett. 109, 053004 (2012).

17. Y. Zhou, Q. Liao, P. Lan, and P. Lu, Chin. Phys. Lett. 25, 3995 (2008).

18. Y. Chen, Y. Zhou, Y. Li, M. Li, P. Lan, and P. Lu, Phys. Rev. A 97, 013428 (2018).

19. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

20. R. R. Jones, D. W. Schumacher, and P. H. Bucksbaum, Phys. Rev. A 47, R49 (1993).

21. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

22. Q. Li, X. Tong, T. Morishita, C. Jin, H. Wei, and C. D. Lin, J. Phys. B 47, 204019 (2014).

23. T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, and W. Sandner, Phys. Rev. Lett. 101, 233001 (2008).

24. S. Eilzer, and U. Eichmann, J. Phys. B 47, 204014 (2014).

25. H. Zimmermann, and U. Eichmann, Phys. Scr. 91, 104002 (2016).

26. U. Eichmann, T. Nubbemeyer, H. Rottke, and W. Sandner, Nature 461, 1261 (2009).

27. B. Manschwetus, T. Nubbemeyer, K. Gorling, G. Steinmeyer, U. Eichmann, H. Rottke, and W. Sandner, Phys. Rev. Lett. 102, 113002 (2009).

28. T. Nubbemeyer, U. Eichmann, and W. Sandner, J. Phys. B 42, 134010 (2009).

29. J. McKenna, S. Zeng, J. J. Hua, A. M. Sayler, M. Zohrabi, N. G. Johnson, B. Gaire, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, Phys. Rev. A 84, 043425 (2011).

30. J. McKenna, A. M. Sayler, B. Gaire, N. G. Kling, B. D. Esry, K. D. Carnes, and I. Ben-Itzhak, New J. Phys. 14, 103029 (2012).

31. J. Wu, A. Vredenborg, B. Ulrich, L. P. H. Schmidt, M. Meckel, S. Voss, H. Sann, H. Kim, T. Jahnke, and R. D?rner, Phys. Rev. Lett. 107, 043003 (2011).

32. A. von Veltheim, B. Manschwetus, W. Quan, B. Borchers, G. Steinmeyer, H. Rottke, and W. Sandner, Phys. Rev. Lett. 110, 023001 (2013).

33. H. Xu, R. Li, and S. L. Chin, Chin. Opt. Lett. 13, 070007 (2015)

34. T. Peyronel, O. Firstenberg, Q. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuleti?, Nature 488, 57 (2012).

35. J. McKenna, S. Zeng, J. J. Hua, A. M. Sayler, M. Zohrabi, N. G. Johnson, B. Gaire, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, Phys. Rev. A 84, 043425 (2011).

36. S. Baur, D. Tiarks, G. Rempe, and S. Dürr, Phys. Rev. Lett. 112, 073901 (2014).

37. D. Paredes-Barato, and C. S. Adams, Phys. Rev. Lett. 112, 040501 (2014).

38. C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J. M. Raimond, and S. Haroche, Nature 448, 889 (2007).

39. C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J. M. Raimond, and S. Haroche, Nature 477, 73 (2011).

40. P. Ge, and Y. Liu, J. Phys. B 50, 125001 (2017).

41. M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

42. N. B. Delone, and V. P. Krainov, J. Opt. Soc. Am. B 8, 1207 (1991).

43. T. F. Gallagher, Phys. Rev. Lett. 61, 2304 (1988).

44. P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev. Lett. 62, 1259 (1989).

45. K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, Phys. Rev. Lett. 70, 1599 (1993).

46. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

47. H. Du, and N. Yang, Chin. Opt. Lett. 11, 063202 (2013).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387