2018-04-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 16 , 2018    10.3788/COL201816.040201


Long-distance characterization of high-quality laser-wakefield-accelerated electron beams
Ming Fang1;2, Wentao Wang1, Zhijun Zhang1, Jiansheng Liu1;3, Changhai Yu1, Rong Qi1, Zhiyong Qin1, Jiaqi Liu1, Ke Feng1, Ying Wu1, Cheng Wang1, Tao Liu4, Dong Wang4, Yi Xu1, Fenxiang Wu1, Yuxin Leng1, Ruxin Li1;3;5, and Zhizhan Xu1;5
1 [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences], Shanghai 201 800, China
2 [University of Chinese Academy of Sciences], Beijing 100049, China
3 Collaborative Innovation Center of IFSA (CICIFSA), [Shanghai Jiao Tong University], Shanghai 200240, China
4 [Shanghai Institute of Applied Physics, Chinese Academy of Sciences], Shanghai 201800, China
5 School of Physical Science and Technology, [ShanghaiTech University], Shanghai 200031, China

Chin. Opt. Lett., 2018, 16(04): pp.040201

DOI:10.3788/COL201816.040201
Topic:Atomic and molecular physics
Keywords(OCIS Code): 020.2649  110.2970  120.3620  

Abstract
Beam quality degradation during the transition from a laser wakefield accelerator to the vacuum is one of the reasons that cause the beam transport distortion, which hinders the way to compact free-electron-lasers. Here, we performed transition simulation to initialize the beam parameters for beam optics transport. This initialization was crucial in matching the experimental results and the designed evolution of the beamline. We experimentally characterized properties of high-quality laser-wakefield-accelerated electron beams, such as transverse beam profile, divergence, and directionality after long-distance transport. By installing magnetic quadrupole lenses with tailored strength gradients, we successfully collimated the electron beams with tunable energies from 200 to 600 MeV.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (821 KB)

Share:


Received:2017/12/4
Accepted:2018/3/1
Posted online:2018/3/26

Get Citation: Ming Fang, Wentao Wang, Zhijun Zhang, Jiansheng Liu, Changhai Yu, Rong Qi, Zhiyong Qin, Jiaqi Liu, Ke Feng, Ying Wu, Cheng Wang, Tao Liu, Dong Wang, Yi Xu, Fenxiang Wu, Yuxin Leng, Ruxin Li, and Zhizhan Xu, "Long-distance characterization of high-quality laser-wakefield-accelerated electron beams," Chin. Opt. Lett. 16(04), 040201(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11127901, 11425418, 61521093, 11304271, 11205228, and 11505263), the Strategic Priority Research Program (B) (No. XDB16), the Youth Innovation Promotion Association CAS, and the State Key Laboratory Program of the Chinese Ministry of Science and Technology. We would like to thank H. Xu for providing the PIC code and the Shanghai Supercomputer Center.



References

1. T. Tajima, and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

2. C. Yu, R. Qi, W. Wang, J. Liu, W. Li, C. Wang, Z. Zhang, J. Liu, Z. Qin, M. Fang, K. Feng, Y. Wu, Y. Tian, Y. Xu, F. Wu, Y. Leng, X. Weng, J. Wang, F. Wei, Y. Yi, Z. Song, R. Li, and Z. Xu, Sci. Rep. 6, 29518 (2016).

3. Z. R. Huang, Y. T. Ding, and C. B. Schroeder, Phys. Rev. Lett. 109, 204801 (2012).

4. K. Nakajima, Nat. Phys. 4, 92 (2008).

5. P. Antici, A. Bacci, C. Benedetti, E. Chiadroni, M. Ferrario, A. R. Rossi, L. Lancia, M. Migliorati, A. Mostacci, L. Palumbo, and L. Serafini, J. Appl. Phys. 112, 044902 (2012).

6. T. Mehrling, J. Grebenyuk, F. S. Tsung, K. Floettmann, and J. Osterhoff, Phys. Rev. ST Accel. Beams 15, 111303 (2012).

7. I. Dornmair, K. Floettmann, and A. R. Maier, Phys. Rev. ST Accel. Beams 18, 041302 (2015).

8. A. Loulergue, M. Labat, C. Evain, C. Benabderrahmane, V. Malka, and M. E. Couprie, New J. Phys. 17, 023028 (2015).

9. T. Zhang, C. Feng, H. Deng, D. Wang, Z. Dai, and Z. Zhao, Opt. Express 22, 13880 (2014).

10. C. Widmann, R. V. Afonso, S. Kuschel, M. Nicolai, and R. Rossmanith, in Proc. of IPAC2015 (2015).

11. W. T. Wang, W. T. Li, J. S. Liu, Z. J. Zhang, R. Qi, C. H. Yu, J. Q. Liu, M. Fang, Z. Y. Qin, C. Wang, Y. Xu, F. X. Wu, Y. X. Leng, R. X. Li, and Z. Z. Xu, Phys. Rev. Lett. 117, 124801 (2016).

12. R. Weingartner, M. Fuchs, A. Popp, S. Raith, S. Becker, S. Chou, M. Heigoldt, K. Khrennikov, J. Wenz, T. Seggebrock, B. Zeitler, Z. Major, J. Osterhoff, F. Krausz, S. Karsch, and F. Gruner, Phys. Rev. ST Accel. Beams 14, 052801 (2011).

13. G. Golovin, S. Banerjee, C. Liu, S. Chen, J. Zhang, B. Zhao, P. Zhang, M. Veale, M. Wilson, P. Seller, and D. Umstadter, Sci. Rep. 6, 24622 (2016).

14. M. Reiser, Theory and Design of Charged Particle Beams , 2nd Ed. (Wiley VCH, 2008).

15. T. Liu, T. Zhang, D. Wang, and Z. Huang, Phys. Rev. ST Accel. Beams 20, 020701 (2017).

16. T. Liu, Z. R. Huang, B. Liu, J. S. Liu, D. Wang, and T. Zhang, in 7th International Particle Accelerator Conference (2016).

17. K. Floettmann, “ASTRA,” http://www.desy.de/~mpyflo/ (1999).

18. Y. Xu, J. Lu, W. K. Li, F. X. Wu, Y. Y. Li, C. Wang, Z. Y. Li, X. M. Lu, Y. Q. Liu, Y. X. Leng, R. X. Li, and Z. Z. Xu, Opt. Laser Technol. 79, 141 (2016).

19. H. Grote, and F. C. Iselin, Report No.?CERN/SL/9013(AP), http://cern.ch/madx/ (1995).

20. M. Borland, “Elegant: a flexible SDDS-compliant code for accelerator simulation,” Report No. Advanced Photon Source LS-287 (2000).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387