2018-04-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 16 , 2018    10.3788/COL201816.032301

Plasmonic sensor with variable claddings based on metallic slit arrays
Jing Ma1, Dongdong Liu2, Jicheng Wang1;3, and Zhengda Hu1
1 School of Science, [Jiangnan University], Wuxi 21 41 22, China
2 School of Mathematics &
Physics Science, [Xuzhou University of Technology], Xuzhou 2 2 1018, China
3 State Key Laboratory of Millimeter Waves, [Southeast University], Nanjing 210096, China

Chin. Opt. Lett., 2018, 16(03): pp.032301

Topic:Optical devices
Keywords(OCIS Code): 230.3990  250.5403  280.4788  

We propose a plasmonic sensor with variable refractive index (RI), which exhibits high sensitivity and extraordinary optical transmission (EOT). Its variable RI is attributed to its dielectric layers and metallic slit arrays. According to simulation results, the third resonant wavelength has a wavelength sensitivity of 800 nm/RIU and an ultra-high transmittance of 0.8 by adjusting the RIs of the upper and lower dielectrics, incident light angle, and structural geometric parameters. With its unique features, the proposed structure holds considerable potential for extensive application to metal–dielectric grating sensors operating at visible and near-infrared frequencies.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (601 KB)


Posted online:2018/3/6

Get Citation: Jing Ma, Dongdong Liu, Jicheng Wang, and Zhengda Hu, "Plasmonic sensor with variable claddings based on metallic slit arrays," Chin. Opt. Lett. 16(03), 032301(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11504139 and 11504140), the Natural Science Foundation of Jiangsu Province (Nos. BK20140167 and BK20140128), the China Postdoctoral Science Foundation (No. 2017M611693), the Open Fund of State Key Laboratory of Millimeter Waves (No. K201802), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 16KJB140016).


1. C. W. Ge, Z. Y. Guo, Y. X. Sun, F. Shen, Y. F. Tao, J. R. Zhang, R. Z. Li, and L. B. Luo, Opt. Commun. 359, 393 (2016).

2. C. Song, X. Xia, Z. D. Hu, Y. Liang, and J. C. Wang, Nanoscale. Res. Lett. 11, 419 (2016).

3. S. Roh, T. Chuang, and B. Lee, Sensors 11, 1565 (2011).

4. O. Krasnykov, A. Karabchevsky, A. Shalabny, M. Auslender, and I. Abdulhalim, Opt. Commun. 284, 1435 (2011).

5. J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, Adv. Funct. Mater. 20, 3918 (2010).

6. J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano. Lett. 12, 602 (2012).

7. T. Ding, M. Hong, A. M. Richards, T. I. Wong, X. Zhou, and C. L. Drum, PLOS ONE 10, e0120974 (2015).

8. A. S. Vengurlekar, Current Sci. 98, 1020 (2010).

9. D. Liu, Q. Fan, M. Mei, J. Wang, Y. Pan, D. Teng, and J. Lu, Chin. Opt. Lett. 14, 052302 (2016).

10. A. A. Darweesh, S. J. Bauman, and J. B. Herzog, Photon. Res. 4, 173 (2016).

11. T. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. F. He, Opt. Express 22, 7669 (2014).

12. J. Yuan, Q. Kan, Z. Geng, Y. Xie, C. Wang, and H. Chen, Chin. Phys. B 23, 55 (2014).

13. Y. Gao, Q. Gan, and F. Bartoli, IEEE J. Sel. Top. Quantum Electron. 20, 96 (2014).

14. X. Zhang, Z. Li, S. Ye, S. Wu, J. Zhang, L. Cui, A. Li, T. Wang, S. Li, and B. Yang, J. Mater. Chem. 22, 8903 (2012).

15. K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu, and P. K. Wei, Sci. Rep.2015, 5, 8547.

16. J. Hu, X. Liu, J. Zhao, and J. Zou, Chin. Opt. Lett. 15, 030502 (2017).

17. R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, Nanoscale Res. Lett. 12, 1 (2017).

18. K. Jia, D. Zhang, and J. Ma, Sens. Actuators B 156, 194 (2011).

19. X. Lu, R. Wa, F. Liu, and T. Zhang, J. Mod. Opt. 63, 177 (2016).

20. S. K. Srivastava, and I. Abdulhalim, Opt. Lett. 40, 2425 (2015).

21. G. Zheng, H. Zhang, L. Xu, and Y. Liu, Opt. Lett. 41, 2274 (2016).

22. Q. Cao, and P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002).

23. G. Zheng, L. Xu, X. Zou, and Y. Liu, Appl. Surf. Sci. 396, 711 (2016).

24. B. Thackray, V. Kravets, F. Schedin, G. Auton, and P. Thomas, ACS Photon. 1, 1116 (2014).

25. J. Zheng, Z. Ye, N. Sun, R. Zhang, Z. Sheng, H. Shieh, and J. Zhang, Sci. Rep. 4, 6491 (2014).

26. Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, Sci. Rep. 5, 12423 (2015).

27. A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, IEEE Photon. Technol. Lett. 27, 693 (2015).

28. A. D. Luca, M. P. Grzelczak, I. P. Santos, L. M. L. Marzán, M. L. Deda, M. Striccoli, and G. Strangi, ACS Nano 5, 5823 (2011).

29. S. H. Chang, S. Gray, and G. Schatz, Opt. Express 13, 3150 (2005).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387