2018-04-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 16 , 2018    10.3788/COL201816.031406


Optimizing power oscillations in an ellipsometric system
Manoel P. Araújo1, Stefano De Leo2, and Gabriel G. Maia1
1 Institute of Physics Gleb Wataghin, [State University of Campinas], Campinas 1 3083-872, Brazil
2 Department of Applied Mathematics, [State University of Campinas], Campinas 13083-2 50, Brazil

Chin. Opt. Lett., 2018, 16(03): pp.031406

DOI:10.3788/COL201816.031406
Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3430  260.3160  260.5430  

Abstract
Ellipsometry is a powerful and well-established optical technique used in the characterization of materials. It works by combining the components of elliptically polarized light in order to draw information about the optical system. We propose an ellipsometric experimental set-up to study polarization interference in the total internal reflection regime for Gaussian laser beams. The relative phase between orthogonal states can be measured as a power oscillation of the optical beam transmitted through a dielectric block, and the orthogonal components are then mixed by a polarizer. We show under which conditions the plane wave analysis is valid, and when the power oscillation can be optimized to reproduce a full pattern of oscillation and to simulate quarter- and half-wave plates.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (423 KB)

Share:


Received:2017/10/23
Accepted:2018/1/12
Posted online:2018/3/9

Get Citation: Manoel P. Araújo, Stefano De Leo, and Gabriel G. Maia, "Optimizing power oscillations in an ellipsometric system," Chin. Opt. Lett. 16(03), 031406(2018)

Note:



References

1. M. Born, and E. Wolf, Principles of Optics (Cambridge University, 1999).

2. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

3. K. Artmann, Ann. Phys. 437, 87 (1948).

4. F. Goos, and H. H?nchen, Ann. Phys. 436, 333 (1947).

5. S. A. Carvalho, and S. De Leo, Am. J. Phys. 83, 249 (2015).

6. F. Goos, and H. H?nchen, Ann. Phys. 440, 251 (1949).

7. A. Rothen, Rev. Sci. Instrum. 16, 26 (1945).

8. R. M. A. Azzam, Selected Papers on Ellipsometry (SPIE, 1991).

9. R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (North–Holland, 1987).

10. H. G. Tompkins, and E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005).

11. K. K. Sharma, Optics: Principles and Applications (Academic, 2006).

12. P. Hariharan, Basics of Interferometry (Academic, 1992).

13. M. P. Araujo, S. A. Carvalho, and S. De Leo, J. Opt. 16, 015702 (2014).

14. M. P. Araújo, S. A. Carvalho, and S. De Leo, Phys. Rev. A 90, 033844 (2014).

15. M. P. Araújo, S. De Leo, and G. Maia, Phys. Rev. A 93, 023801 (2016).

16. O. Santana, S. Carvalho, S. De Leo, and L. Araujo, Opt. Lett. 41, 3884 (2016).

17. M. P. Araújo, S. De Leo, and G. Maia, Phys. Rev. A 95, 053836 (2017).

18. M. Araújo, S. De Leo, and G. Maia, Ann. Phys. 529, 1600357 (2017).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387