2018-06-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 16 , 2018    10.3788/COL201816.031405


Three-dimensional multiple optical cages formed by focusing double-ring shaped radially and azimuthally polarized beams
Tingting Zeng, Jianping Ding
National Laboratory of Solid Microstructure and School of Physics, [Nanjing University], Nanjing 210093, China

Chin. Opt. Lett., 2018, 16(03): pp.031405

DOI:10.3788/COL201816.031405
Topic:Lasers and laser optics
Keywords(OCIS Code): 050.1960  260.5430  140.3300  

Abstract
We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combination of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling algorithm to a double-ring shaped radially and azimuthally polarized beam.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (480 KB)

Share:


Received:2017/10/11
Accepted:2018/1/12
Posted online:2018/3/6

Get Citation: Tingting Zeng, Jianping Ding, "Three-dimensional multiple optical cages formed by focusing double-ring shaped radially and azimuthally polarized beams," Chin. Opt. Lett. 16(03), 031405(2018)

Note: This work was supported in part by the National Natural Science Foundation of China (Nos. 91750202, 11530046, and 11474156), the National Key R&D Program of China (No. 2017YFA0303700), the Collaborative Innovation Center of Advanced Microstructures of China, and the Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics of China.



References

1. J. Arlt, and M. J. Padgett, Opt. Lett. 25, 191 (2000).

2. M. Neugebauer, A. Aiello, and P. Banzer, Chin. Opt. Lett. 15, 030003 (2017).

3. L. Isenhower, W. Williams, A. Dally, and M. Saffman, Opt. Lett. 34, 1159 (2009).

4. X. Peng, C. Chen, B. Chen, Y. Peng, M. Zhou, X. Yang, and D. Deng, Chin. Opt. Lett. 14, 011405 (2016).

5. S. K. Mohanty, R. S. Verma, and P. K. Gupta, Appl. Phys. B 87, 211 (2007).

6. Y. Yang, Z. Shi, J. Li, and Z. Li, Photon. Res. 4, 2 (2016).

7. Y. Iketaki, H. Kumagai, K. Jahn, and N. Bokor, Opt. Lett. 40, 1057 (2015).

8. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, Nat. Meth. 5, 539 (2008).

9. S. N. Khonina, and I. Golub, J. Opt. Soc. Am. A 29, 1470 (2012).

10. Y. Kozawa, and S. Sato, Opt. Lett. 31, 820 (2006).

11. Y. Chen, and Y. Cai, Opt. Lett. 39, 2549 (2014).

12. Y. Zhang, Appl. Opt. 49, 6217 (2010).

13. N. Bokor, and N. Davidson, Opt. Lett. 31, 149 (2006).

14. X. L. Wang, J. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, Opt. Commun. 282, 3421 (2009).

15. H. Guo, X. Weng, X. Dong, G. Sui, X. Gao, and S. Zhuang, J. Opt. 40, 206 (2011).

16. X. Weng, L. Du, P. Shi, and X. Yuan, Opt. Express 25, 9039 (2017).

17. X. Weng, L. Du, P. Shi, and X. Yuan, Appl. Opt. 56, 1046 (2017).

18. Q. Zhan, and J. Leger, Opt. Express 10, 324 (2002).

19. K. S. Youngworth, and T. G. Brown, Opt. Express 7, 77 (2000).

20. B. Richards, and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).

21. M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, Opt. Express 14, 11277 (2006).

22. Z. Chen, T. Zeng, and J. Ding, Opt. Lett. 41, 1929 (2016).

23. M. Yang, and J. Ding, Opt. Commun. 203, 51 (2002).

24. Z. Chen, T. Zeng, B. Qian, and J. Ding, Opt. Express 23, 17701 (2015).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387