2018-08-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 16 , 2018    10.3788/COL201816.031404

Self-starting simple structured dual-wavelength mode-locked erbium-doped fiber laser using a transmission-type semiconductor saturable absorber
Junkai Shi1, Weihu Zhou1;2
1 Laboratory of Laser Measurement Technology, [Academy of Opto-Electronics, Chinese Academy of Sciences], Beijing 1 00094, China
2 [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2018, 16(03): pp.031404

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.4050  140.7090  140.3510  

A self-starting simple structured dual-wavelength passively mode-locked (ML) erbium-doped fiber (EDF) laser is proposed in this Letter. An all-fiber ring cavity is adopted and a transmission-type semiconductor saturable absorber is used as modelocker. In this laser, there are two gain humps located at the 1530 nm region and the 1550 nm region, respectively. Along with the length of EDF increasing, the intensity of the hump at 1530 nm region is gradually suppressed because of the re-absorption of emission by the ground state. With the proper length of EDF, the gain intensities of two regions are very close. When the pump power is above the ML threshold, the self-starting dual-wavelength ML operation is achieved easily without manual adjustment. The two spectral peaks with close intensities are located at 1532 and 1552 nm, respectively. The effect of intracavity dispersion on the output spectrum is also experimentally demonstrated.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (557 KB)


Posted online:2018/3/7

Get Citation: Junkai Shi, Weihu Zhou, "Self-starting simple structured dual-wavelength mode-locked erbium-doped fiber laser using a transmission-type semiconductor saturable absorber," Chin. Opt. Lett. 16(03), 031404(2018)

Note: This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 61475162 and 61377103), the Key Project of Bureau of International Co-operation, Chinese Academy of Sciences (No. 181811KYSB20160029), and the Key Research Project of Bureau of Frontier Sciences and Education, Chinese Academy of Sciences (No. QYZDY-SSW-JSC008).


1. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, Opt. Express 19, 1168 (2011).

2. S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, Opt. Express 22, 11417 (2015).

3. J. Zhou, A. Luo, Z. Luo, X. Wang, X. Feng, and B. Guan, Photon. Res. 3, A21 (2015).

4. S. J. Tan, H. Haris, and S. W. Harun, Chin. Opt. Lett. 15, 101401 (2017).

5. S. Li, K. Chan, Y. Liu, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 10, 1712 (1998).

6. G. Lin, H. Wang, G. Lin, Y. Huang, Y. Lin, and T. Cheng, J. Lightwave Technol. 27, 552 (2009).

7. G. Lin, T. Cheng, Y. Chi, G. Lin, H. Wang, and Y. Lin, Opt. Express 17, 17739 (2009).

8. G. Lin, Y. Liao, Y. Chi, H. Kuo, G. Lin, H. Wang, and Y. Chen, J. Lightwave Technol. 28, 2925 (2010).

9. M. Zhang, D. Wang, H. Li, and W. Jin, IEEE Photon. Technol. Lett. 14, 92 (2002).

10. Z. Zhang, and T. Yagi, Opt. Lett. 18, 2126 (1993).

11. C. Zhu, J. He, and S. Wang, Opt. Lett. 30, 561 (2005).

12. G. Xie, D. Tang, H. Luo, H. Zhang, H. Yu, J. Wang, X. Tao, M. Jiang, and L. Qian, Opt. Lett. 33, 1872 (2008).

13. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, Opt. Express 18, 1479 (2010).

14. J. B. Schlager, S. Kawanishi, and M. Saruwatari, Electron. Lett. 27, 2072 (1991).

15. G. E. Town, L. Chen, and P. W. E. Smith, IEEE Photon. Technol. Lett. 12, 1459 (2000).

16. H. Dong, G. H. Zhu, Q. Wang, H. Z. Sun, and N. K. Dutta, Opt. Express 12, 4297 (2004).

17. J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, Opt. Commun. 191, 341 (2001).

18. Z. Chen, H. Sun, S. Ma, and N. K. Dutta, IEEE Photon. Technol. Lett. 20, 2066 (2008).

19. S. Pan, and C. Lou, IEEE Photon. Technol. Lett. 18, 1451 (2006).

20. A. Jain, N. Chandra, A. Anchal, and K. K. Pradeep, Opt. Laser Technol. 83, 189 (2016).

21. D. Mao, and H. Lu, J. Opt. Soc. Am. B 29, 2819 (2012).

22. A. Luo, Z. Luo, W. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, Laser Phys. Lett. 8, 601 (2011).

23. Z. C. Tiu, S. J. Tan, H. Ahmad, and S. W. Harun, Chin. Opt. Lett. 12, 113202 (2014).

24. Z. Wang, S. Du, J. Wang, F. Zou, Z. Wang, W. Wu, and J. Zhou, Chin. Opt. Lett. 14, 041401 (2016).

25. X. Jin, X. Wang, X. Wang, and P. Zhou, Appl. Opt. 54, 8260 (2015).

26. L. Yun, X. Liu, and D. Mao, Opt. Express 20, 20992 (2012).

27. H. Zhang, D. Tang, X. Wu, and L. Zhao, Opt. Express 17, 12692 (2009).

28. Z. Luo, A. Luo, and W. Xu, IEEE Photon. J. 3, 64 (2011).

29. Z. Zhang, Z. Xu, and L. Zhang, Opt. Express 20, 26736 (2012).

30. Z. Luo, J. Wang, M. Zhou, H. Xu, Z. Cai, and C. Ye, Laser Phys. Lett. 9, 229 (2012).

31. M. Liu, N. Zhao, H. Liu, X. Zheng, A. Luo, Z. Luo, W. Xu, C. Zhao, H. Zhang, and S. Wen, IEEE Photon. Technol. Lett. 26, 983 (2014).

32. B. Guo, Y. Yao, J. Xiao, R. Wang, and J. Zhang, IEEE J. Sel. Top. Quantum Electron. 22, 0900108 (2016).

33. C. Zeng, Y. Cui, and J. Guo, Opt. Commun. 347, 44 (2015).

34. A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 71, 053809 (2005).

35. E. Desurvire, and J. R. Simpson, J. Lightwave Technol. 7, 835 (1989).

36. G. P. Agrawal, Nonlinear Fiber Optics , 4th ed. (Academic, 2007).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387