2018-04-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 16 , 2018    10.3788/COL201816.031403

Stabilized DFB laser system with large tuning range
Jiachen Yu, Pingjun Wang, Qi Yu, Yin Zhang, Wei Xiong, and Xuzong Chen
Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, [Peking University], Beijing 100871, China

Chin. Opt. Lett., 2018, 16(03): pp.031403

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.2020  140.3425  250.5960  

We propose, design, and realize a compact stabilized laser system that can be tuned within 24 GHz automatically. This laser system consists of two distributed feedback (DFB) lasers, one of which is reference and locked to the D2 line of Rb87, the other laser is a slave that is locked to the reference laser via a loop servo. We measured the frequency of the beating signal of the two lasers and generated an error signal, which controlled the frequency of the slave laser to close the loop. We compressed the fluctuation of the beating signal’s frequency to less than 1 MHz. Furthermore, the system can also automatically determine and control whether the slave is red detuned or blue detuned to the reference. The dimensions of our laser system are about 15 cm?×?20 cm?×?10 cm. This kind of laser system can be applied in many important applications, such as atomic interferometer and cold atomic clock.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (593 KB)


Posted online:2018/3/7

Get Citation: Jiachen Yu, Pingjun Wang, Qi Yu, Yin Zhang, Wei Xiong, and Xuzong Chen, "Stabilized DFB laser system with large tuning range," Chin. Opt. Lett. 16(03), 031403(2018)



1. M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

2. R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, Nature 519, 211 (2015).

3. A. Klein, and D. Jaksch, Phys. Rev. A 73, 053613 (2006).

4. W. Weimer, K. Morgener, V. P. Singh, J. Siegl, K. Hueck, N. Luick, L. Mathey, and H. Moritz, Phys. Rev. Lett. 114, 095301 (2015).

5. W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, and L. Maleki, in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), p.?8.

6. D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, Phys. Rev. A 78, 053824 (2008).

7. Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, Appl. Phys. Lett. 102, 144107 (2013).

8. J. Le Gou?t, T. E. Mehlst?ubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, Appl. Phys. B 92, 133 (2008).

9. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, Science 341, 1215 (2013).

10. S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, Science 285, 571 (1999).

11. C. Lee, Phys. Rev. Lett. 97, 150402 (2006).

12. T. Riesbeck, and O. Lux, Opt. Commun. 282, 3789 (2009).

13. A. F. El-Sherif, and T. A. King, Opt. Commun. 218, 337 (2003).

14. A. Jürgen, M. Andrew, and A. I. Lvovsky, Meas. Sci. Technol. 20, 055302 (2009).

15. A. M. Marino, and C. R. Stroud, Rev. Sci. Instrum. 79, 013104 (2008).

16. Y. Zhang, and Q. Wang, Chin. J. Lasers 41, 602001 (2014).

17. J. C. Alex Abramovici, Feedback Control Systems: A Fast-Track Guide for Scientists and Engineers (Springer, 2000).

18. C. Chen, S. Shi, and Y. Zheng, Rev. Sci. Instrum. 88, 103101 (2017).

19. Y. Wang, Q. Wang, J. Fu, and T. Dong, Principle of Quantum Frequency Standards (Science, 1986).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387