2018-04-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 16 , 2018    10.3788/COL201816.031201

Multi-frequency lateral shear interferometer system for simultaneous measurement of thickness and three-dimensional shape
Xiangjun Dai1;2, Tianyu Yuan1, Hanyang Jiang2, Xinxing Shao2, Meiling Dai2, Hai Yun1, Fujun Yang2, and Xiaoyuan He2
1 School of Transportation and Vehicle Engineering, [Shandong University of Technology], Zibo 255049, China
2 Department of Engineering Mechanics, [Southeast University], Nanjing 2 10096, China

Chin. Opt. Lett., 2018, 16(03): pp.031201

Topic:Instrumentation, measurement and metrology
Keywords(OCIS Code): 120.3180  120.6650  120.4290  

This Letter demonstrates a novel lateral shear interferometer system for simultaneous measurement of three-dimensional (3D) shape and thickness of transparent objects. Multi-frequency fringe patterns can be created by tilting mirrors at different inclination angles. With a single camera, the multi-frequency fringes are recorded in one image. The phase-shift of the fringes can be generated synchronously only by moving a plane-parallel plate along an in-plane parallel direction. According to the feature of transparent materials, the thickness and 3D shape can be reconstructed simultaneously based on the relationship between the in-plane displacement and their characteristics. The experiment was conducted on a thin transparent film subjected to a shearing force, which verifies the feasibility of the proposed system.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (635 KB)


Posted online:2018/3/9

Get Citation: Xiangjun Dai, Tianyu Yuan, Hanyang Jiang, Xinxing Shao, Meiling Dai, Hai Yun, Fujun Yang, and Xiaoyuan He, "Multi-frequency lateral shear interferometer system for simultaneous measurement of thickness and three-dimensional shape," Chin. Opt. Lett. 16(03), 031201(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11672167, 11602056, 11472081, and 11532005).


1. D. Pristinski, V. Kozlovskaya, and S. A. Sukhishvili, J. Opt. Soc. Am. A 23, 2639 (2006).

2. X. Dai, H. Yun, and Q. Pu, Opt. Commun. 283, 3481 (2010).

3. X. Liu, S. Wang, H. Xia, X. Zhang, R. Ji, T. Li, and W. Liu, Chin. Opt. Lett. 14, 081203 (2016).

4. H. Yang, X. Guo, M. Xu, and X. Cai, Chin. Opt. Lett. 12, 123102 (2014).

5. C. Qiu, X. Sun, and M. Luan, Chin. Opt. Lett. 11, 071201 (2013).

6. S. Liu, and Z. Liu, Opt. Lasers Eng. 80, 17 (2016).

7. C. Zhang, X. Dong, X. Feng, and K. Hwang, Opt. Lett. 38, 5446 (2013).

8. F. Drouet, C. Stolz, O. Laligant, and O. Aubreton, Opt. Lett. 39, 2955 (2014).

9. G. Coppola, P. Ferraro, M. Iodice, and N. S. De, Appl. Opt. 42, 3882 (2003).

10. X. Dai, X. Shao, F. Yang, and H. Yun, Opt. Commun. 369, 18 (2016).

11. B. ?anti?, Thin Solid Films 518, 3619 (2010).

12. Y. S. Ghim, H. G. Rhee, A. Davies, H. S. Yang, and Y. W. Lee, Opt. Express 22, 5098 (2014).

13. K. Hibino, B. F. Oreb, P. S. Fairman, and J. Burke, Appl. Opt. 43, 1241 (2004).

14. Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, Opt. Express 23, 32869 (2015).

15. C. Shakher, D. S. Mehta, M. M. Hossain, and S. K. Dubey, Appl. Opt. 44, 7515 (2005).

16. Z. Wang, D. A. Nguyen, and J. C. Barnes, Opt. Lasers Eng. 48, 218 (2010).

17. M. Dai, F. Yang, C. Liu, and X. He, Opt. Commun. 382, 294 (2017).

18. Z. Lei, C. Wang, and C. Zhou, Opt. Lasers Eng. 66, 249 (2015).

19. D. Malacara, ed., Optical Shop Testing , 3rd ed. (Wiley, 2007).

20. K. J. Gasvik, Optical Metrology , 3rd ed. (Wiley, 2002).

21. X. Dai, X. Shao, L. Li, C. Liu, M. Dai, H. Yun, and F. Yang, Appl. Opt. 56, 5954 (2017).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387