2018-04-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 16 , 2018    10.3788/COL201816.030801

Design of a hyper-numerical-aperture deep ultraviolet lithography objective with freeform surfaces
Shanshan Mao, Yanqiu Li, Jiahua Jiang, Shihuan Shen, Ke Liu, and Meng Zheng
Key Laboratory of Photoelectron Imaging Technology and System of the Ministry of Education, School of Optics and Photonics, [Beijing Institute of Technology], Beijing 100081, China

Chin. Opt. Lett., 2018, 16(03): pp.030801

Topic:Geometric optics
Keywords(OCIS Code): 080.2740  080.2468  120.4820  220.3740  

We have proposed and developed a design method of a freeform surfaces (FFSs) based hyper-numerical-aperture deep ultraviolet (DUV) projection objective (PO) with low aberration. With an aspheric initial configuration, lens-form parameters were used to determine the best position to remove elements and insert FFSs. The designed FFSs PO reduced two elements without increasing the total thickness of the glass materials. Compared with aspheric initial configuration, the wavefront error of the FFSs PO decreased from 0.006λ to 0.005λ, the distortion reduced from 1 to 0.5 nm, and the aspheric departure decreased from 1.7 to 1.35 mm. The results show that the design method of the FFSs PO is efficient and has improved the imaging performance of PO. The design method of FFSs PO provides potential solutions for DUV lithography with low aberrations at 10–5 nm nodes.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1088 KB)


Posted online:2018/3/6

Get Citation: Shanshan Mao, Yanqiu Li, Jiahua Jiang, Shihuan Shen, Ke Liu, and Meng Zheng, "Design of a hyper-numerical-aperture deep ultraviolet lithography objective with freeform surfaces," Chin. Opt. Lett. 16(03), 030801(2018)

Note: We thank the Major Scientific Instrument Development Project of the National Natural Science Foundation of China (Nos. 11627808 and 61675026) and the National Science and Technology Major Project for their financial support.


1. H. Shang, W. Huang, C. Liu, W. Xu, and W. Yang, Chin. Opt. Lett. 11, 090802 (2013).

2. Y. Uehara, J. Ishikawa, H. Kohno, E. Tanaka, M. O. Ohba, and Y. Shibazaki, Proc. SPIE 8326, 83261H (2012).

3. Z. Cao, Y. Li, and S. Mao, Opt. Eng. 56, 025102 (2017).

4. D. G. Flagello, and S. P. Renwick, Proc. SPIE 9426, 942604 (2015).

5. K. P. Thompson, and J. P. Rolland, Opt. Photon. News 23, 30 (2012).

6. Y. Liu, Y. Li, and Z. Cao, Appl. Opt. 55, 4917 (2016).

7. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, Appl. Opt. 48, 2655 (2009).

8. F. Duerr, Y. Meuret, and H. Thienpont, Opt. Express 21, 31072 (2013).

9. T. Yang, G. Jin, and J. Zhu, Chin. Opt. Lett. 15, 062202 (2017).

10. H. J. Mann, “Projection optics for microlithography,” U.S. Patent 8,643,824 (February4, 2014).

11. J. M. Sasian, and M. R. Descour, Opt. Eng. 37, 1001 (1998).

12. X. Cheng, Y. Wang, Q. Hao, and J. Sasian, Appl. Opt. 42, 1309 (2003).

13. S. Weichselbaum, F. Bornebroek, T. Kort, R. Droste, R. Graaf, R. Ballegoij, H. Botter, M. G. Mclaren, and W. P. Boeij, Proc. SPIE 9426, 942616 (2015).

14. D. Shafer, W. Ulrich, A. Dodoc, R. V. Buenau, H. J. Mann, and A. Epple, “Catadioptric projection objective,” U.S. Patent 7,869,122 (January11, 2011).

15. O. Marinescu, and F. Bociort, Opt. Eng. 47, 093002 (2008).

16. H. Jasper, T. Modderman, M. Kerhof, C. Wagner, J. Mulkens, W. Boeij, E. Setten, and B. Kneer, Proc. SPIE 6154, 61541W (2006).

17. C. Supranowitz, P. Dumas, T. Nitzsche, J. D. Nelson, B. Light, K. Medicus, and N. Smith, Proc. SPIE 8884, 888411 (2013).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387